Skip to main content
Log in

Modelling the fracture of cementitious materials

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The crack band and the fictitious crack line models of the fracture process zone in cementitious materials are discussed. The two methods are quite similar. However, the fictitious crack model is shown to lend itself to a simple K-superposition method which makes use of known analytical expressions. This method is shown to give very similar results to a finite-element analysis of the fictitious crack model and has the advantage that it can be programmed for a personal computer. The predictive capability of the fictitious crack model is demonstrated by comparison of the experimental load-deflection curve for a small notch bend mortar specimen with a theoretical curve calculated from data obtained from larger beams. It is suggested that the RILEM test method for the determination of the fracture energy should be used also to establish a bilinear stress-displacement relationship for the strain-softening of the fracture process zone.

Resume

Deux modèles de description de la rupture par fissuration des matériaux à base de ciment sont ici étudiés: celui de la ‘bande de fissuration’ et celui de la ‘fissuration fictive’. Les deux types d’analyse sont très proches mais on montre cependant que le modèle de ‘fissure fictive’ peut se ramener à une méthode de superposition de trois facteurs d’intensité de contrainte dont l’utilisation requiert la connaissance d’expressions analytiques.

Cette méthode se révèle donner des résultats très similaires à ceux obtenus par éléments finis avec la ‘fissure fictive’ et présente l’avantagè de pouvoir être programmée sur un ordinateur de type P.C.

On démontre la capacité de prédiction du modèle de fissuration fictive par comparaison de la courbe expérimentale charge/flèche d’une petite éprouvette de mortier entaillée avec la courbe théorique calculée à partir des données obtenues sur des poutres plus grandes.

On suggère que la méthode d’essai RILEM, peur la détermination de l’énergie de rupture, soit aussi utilisée afin d’établir une relation bilinéaire contrainte-déplacement pour la phase de radoucissement qui apparaît dans la zone de fissuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RILEM Draft Recommendations (50-FMC), ‘Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams’,Mater. Construct. 18(106) (1985) 285–290.

    Google Scholar 

  2. Roelfstra, P. E. and Wittmann, F. H., ‘Numerical method to link strain softening with failure of concrete’, in ‘Fracture Toughness and Fracture Energy of Concrete’, edited by F. H. Wittmann (Elsevier, Amsterdam, 1986) pp. 127–137.

    Google Scholar 

  3. Wittmann, F. H., Roelfstra, P. E., Mihashi, H., Huang, Y.-Y., Zhang, X.-H. and Noniwa, N., Influence of age of loading, water-cement ratio and rate of loading on fracture energy of concrete”,Mater. Construct. 20(116) (1987) 103–110.

    Article  Google Scholar 

  4. Carpintieri, A., Columbo, G., Ferrara, G. and Guiseppetti, G., ‘Numerical simulation of concrete fracture through a bilinear softening stress-crack opening displacement’, in ‘Fracture of Concrete and Rock’, edited by S. P. Shah and S. E. Swartz (Springer, Berlin, 1987) pp. 131–141.

    Google Scholar 

  5. Li, V. C., ‘Fracture resistance parameters for cementitious materials and their experimental determinators’, in ‘Application of Fracture Mechanics to Cementitious Composites’, edited by S. P. Shah (Nijhoff, Dordrecht, 1984) pp. 431–449.

    Google Scholar 

  6. Malvar, L. J. and Warren, G. E., ‘Fracture energy for three-point-bend tests on single-edge-notch beams’,Exper. Mech. 28(3) (1988) 266–272.

    Article  Google Scholar 

  7. Hillerborg, A., Modéer, M. and Petersson, P. E., “Analysis of crack formation in concrete by means of fracture mechanics and finite elements’,Cement Concr. Res. 6(6) (1976) 773–781.

    Article  Google Scholar 

  8. Petersson, P. E., “Crack growth development of fracture zones in plain concrete and similar materials’, Report TVBM-1006 (Division of Building Materials, Lund Institute of Technology, 1981).

  9. Bažant, Z. P. and Oh, B. H., ‘Crack band theory for fracture of concrete’,Mater. Construct. 16(93) (1983) 155–177.

    Google Scholar 

  10. Bažant, Z. P., ‘Mechanics of distributed cracking’,Appl. Mech. Rev. 39(5) (1986) 675–705.

    Article  Google Scholar 

  11. Foote, R. M. I., Cotterell, B. and Mai, Y.-W., ‘Analytical modelling of crack growth resistance curves in double cantilever beam fibre reinforced cement specimens’, in ‘Fracture Toughness and Fracture Energy of Concrete’, edited by F. H. Wittmann (Elsevier, Amsterdam, 1986) pp. 91–100.

    Google Scholar 

  12. Foote, R. M. L., Mai, Y.-W. and Cotterell, B., ‘Crack growth resistance curves in strain-softening materials’,J. Mech. Phys. Solids,34(6) (1986) 593–607.

    Article  Google Scholar 

  13. Cotterell, B., Mai, Y.-W. and Foote, R. M. I., ‘Bounding solutions for crack growth resistance curves in fibre reinforced cement composites’, in ‘Engineering Applications of New Composites’, edited by S. A. Paipetis and G. C. Papanicolaou (Omega, Wallingford, 1988) pp. 186–197.

    Google Scholar 

  14. Cotterell, B. and Mai, Y.-W., ‘Modelling crack growth in fibre-reinforced cementitious materials’,Mater. Forum 11 (1988) 341–351.

    Google Scholar 

  15. Jenq, Y. S. and Shah, S. P., ‘Two parameter model for concrete’,J. Eng. Mech. ASCE 111(10) (1985) 1227–1240.

    Article  Google Scholar 

  16. Idem., ‘Crack propagation in fibre-reinforced concrete’,J. Struct. Eng. ASCE 112(1) (1986) 19–34.

    Google Scholar 

  17. Tada, H., Paris, P. C. and Irwin, G. R., ‘The Stress Analysis of Cracks Handbook’ (Del Research Corp., Hellertown. 1973).

    Google Scholar 

  18. Körmeling, H. A. and Reinhardt, H. W., ‘Determination of the fracture energy of normal concrete and epoxy modified concrete’, Report 5-83-18 (Steven Laboratory, Delft University of Technology, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotterell, B., Paramasivam, P. & Lam, K.Y. Modelling the fracture of cementitious materials. Materials and Structures 25, 14–20 (1992). https://doi.org/10.1007/BF02472208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472208

Keywords

Navigation