Skip to main content
Log in

Internal friction of submicrocrystalline metal

  • Technical Information
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The results of a study of the structure of submicrocrystalline metals conducted with the help of transmission electron microscopy, Mössbauer spectroscopy, and calorimetric measurements are presented. The effect of the special features of the microstructure on the amplitude and temperature dependences of the internal friction in submicrocrystalline copper and steel 12Kh18N10T is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Birringer and H. Gleiter, “Nanocrystalline materials,” in: R. W. Cahn (ed.),Encyclopedia of Materials, Sci. Eng. Suppl. 1, Pergamon Press (1988), pp. 339–349.

  2. I. D. Morokhov, L. I. Trusov, and V. I. Lapovok,Physical Pheno-mena in Ultradisperse Media [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  3. F. H. Froes and C. Suryanarayana, “Nanocrystalline metals for structural applications,”JOM, June, 12–17 (1989).

    Google Scholar 

  4. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation,”Mater. Sci. Eng. A168, 141–148 (1993).

    Article  Google Scholar 

  5. M. S. Blanter, Yu. V. Piguzov, G. M. Ashmarin, et al.,The Method of Internal Friction in Metal Science Research [in Russian], Metallurgiya, Moscow (1991).

    Google Scholar 

  6. S. A. Golovin, A. Pushkar, and D. M. Levin,Elastic and Damping Properties of Structural Metallic Materials [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  7. Yu. K. Favstov, Yu. N. Shul'ga, and A. G. Rakhashtadt,The Physical Metallurgy of High-Damping Alloys [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  8. N. A. Akhmadeev, R. Z. Valiev, V. I. Kopylov, and R. R. Mulyukov, “Formation of submicrograin structure in copper and nickel with the use of intense shear deformation,”Izv. Ros. Akad. Nauk, Met., No. 5, 96–101 (1992).

    Google Scholar 

  9. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, et al., “Evolution of the structure of f.c.c. single crystals under high plastic deformation,”Fiz. Met. Metalloved., No. 61, 1170–1175 (1986).

    CAS  Google Scholar 

  10. R. R. Mulyukov, “Structure and properties of submicrocrystalline metals obtained by intense plastic deformation,”Author's Abstract of Candidate's Thesis [in Russian], MISiS, Moscow (1997).

    Google Scholar 

  11. O. A. Kaibyshev and R. Z. Valiev,Grain Boundaries and Properties of Metals [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  12. M. V. Grabskii,Structural Superplasticity of Metals, [Russian translation], Metallurgiya, Moscow (1975).

    Google Scholar 

  13. R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov, and V. A. Shabashov, “Mossbauer analysis of submicrometer grained iron,”Scr. Met. et Mat.,25, 2717–2722 (1991).

    Article  CAS  Google Scholar 

  14. V. A. Shabashov, V. V. Ovchinnikov, R. R. Mulyukov, et al., “On determining “grain boundary phase” in submicrocrystalline iron by the Mössbauer method,”Fiz. Met. Metalloved.,85, Issue 3, 100–112 (1998).

    CAS  Google Scholar 

  15. R. R. Mulyukov, N. A. Akhmadeev, R. Z. Valiev, et al., “Amplitude dependence of internal friction and the strength of submicrocrystalline copper,”Metallofiz.,15, 50–59 (1993).

    CAS  Google Scholar 

  16. R. Mulyukov, M. Weller, R. Z. Valiev, et al., “Internal friction and shear modulus in submicrograined Cu,”Nanostructured Mater.,6, 577–580 (1995).

    Article  Google Scholar 

  17. L. Rotherham and S. Pearson, “Internal friction and grain boundary viscosity of copper and binary copper solid solutions,”J. Met.,8, 881–892 (1956).

    CAS  Google Scholar 

  18. K. Iwasaki, “Peaks of intercrystallite internal friction,”Nippon Kinzoku Gakkai Kaiho,26, 382–399 (1987).

    Google Scholar 

  19. T. M. Williams and G. M. Leak, “High temperature relaxation reaks in copper and aluminum,”Acta Met.,15(15), 1111–1118 (1967).

    Article  CAS  Google Scholar 

  20. K. Iwasaki,Bull. Jpn. Inst. Metals,26, 382 (1987).

    Google Scholar 

  21. P. G. Bordoni,Ric. Sci.,19, 851 (1949).

    Google Scholar 

  22. W. E. Alnaser and D. H. Niblett,J. Phys. (Fr.),48, 77 (1987).

    Google Scholar 

  23. R. R. Mulyukov, S. B. Mikhailov, R. G. Zaripova, and D. A. Salimonenko, “Damping properties of 18 Cr−10 Ni stainless steel with submicrocrystalline structure,”Mater. Res. Bull. 31(6), 639–645 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 34–38, August, 1998.

The results of the work have been reported at the international conference “Interaction of Defects and Inelastic Phenomena in Solid Bodies” that took place in September 23–25, 1997, in Tula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyukov, R.R. Internal friction of submicrocrystalline metal. Met Sci Heat Treat 40, 341–345 (1998). https://doi.org/10.1007/BF02466223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02466223

Keywords

Navigation