Skip to main content
Log in

Effects of amino-acid substitutions in β tubulin on benomyl sensitivity and microtubule functions inCoprinus cinereus

  • Original Papers
  • Published:
Mycoscience

Abstract

The sensitivity of the homobasidiomyceteCoprinus cinereus to the benzimidazole fungicide benomyl allowed us to isolate β-tubulin mutants as strains resistant to benomyl. To understand the molecular basis for the interaction between benomyl and β tubulin and for cellular defects in the β-tubulin mutants, we first analyzed the wild-type β1-tubulin gene (benA) ofC. cinereus, revealing thatbenA contains eight introns and encodes a 445 amino-acid protein. We then characterized 16 β1-tubulin mutants. The 16 mutations involved 11 different amino-acid substitutions at 10 different residues in β1 tubulin. The mutated residues were widely distributed along the primary sequence of β1 tubulin, from residue 3 in the N-terminal domain to residue 350 in the intermediate domain, but half of them appeared to be close to the αβ intradimer interface in an atomic model determined by electron crystallography. The benomyl resistant strain BEN 193, which exhibits clear heat sensitivity for hyphal growth and defects in various cellular processes, had a novel mutation, i.e., the Leu to Phe substitution at residue 350. Benomyl resistance and the heat sensitivity in BEN 193 were suppressed by additional amino-acid substitutions at various residues in β1 tubulin, suggesting that conformational changes of β1 tubulin are involved in the alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Binninger, D. M., Skrzynia, C., Pukkila, P. J. and Casselton, L. A. 1987. DNA-mediated transformation of the basidiomyceteCoprinus cinereus. EMBO J.6: 835–840.

    PubMed  CAS  Google Scholar 

  • Cruz, M. C. and Edlind, T. 1997. β-Tubulin genes and the basis for benzimidazole sensitivity of the opportunistic fungusCryptococcus neoformans. Microbiology143: 2003–2008.

    Article  PubMed  CAS  Google Scholar 

  • Fujimura, M., Oeda, K., Inoue, H. and Kato, T. 1992. A single amino-acid substitution in the beta-tubulin gene ofNeurospora confers both carbendazim resistance and diethofencarb sensitivity. Curr. Genet.21: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Fujimura, M., Kamakura, T., Inoue, H. and Yamaguchi, I. 1994. Amino-acid alterations in the β-tubulin gene ofNeurospora crassa that confer resistance to carbendazim and diethofencarb. Curr. Genet.25: 418–422.

    Article  PubMed  CAS  Google Scholar 

  • Gurr, S. J., Unkles, S. E. and Kinghorn, J. R. 1987. The structure and organization of nuclear genes of filamentous fungi. In: Gene structure in eukaryotic microbes, (ed by Kinghorn, J. R.), pp. 93–139. IRL Press, Oxford.

    Google Scholar 

  • Huffaker, T. C., Thomas, J. H. and Botstein, D. 1988. Diverse effects of β-tubulin mutations on microtubule formation and function. J. Cell Biol.106: 1997–2010.

    Article  PubMed  CAS  Google Scholar 

  • Jung, M. K. and Oakley, B. R. 1990. Identification of an amino acid substitution in thebenA, β-tubulin gene ofAspergillus nidulans that confers thiabenzazole resistance and benomyl supersensitivity. Cell Motil. Cytoskeleton17: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Jung, M. K., Wilder, I. B. and Oakley, B. R. 1992. Amino acid alterations in thebenA (β-tubulin) gene ofAspergillus nidulans that confer benomyl resistance. Cell Motil. Cytoskeleton22: 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Jung, M. K., May, G. S. and Oakley, B. R. 1998. Mitosis in wild-type and β-tubulin mutant strains ofAspergillus nidulans. Fungal Genet. Biol.24: 146–160.

    Article  PubMed  CAS  Google Scholar 

  • Kamada, T., Katsuda, H. and Takemaru, T. 1984. Temperature sensitive mutants ofCoprinus cinereus defective in hyphal growth and stipe elongation. Curr. Microbiol.11: 309–312.

    Article  Google Scholar 

  • Kamada, T., Sumiyoshi, T., Shindo, Y. and Takemaru, T. 1989a. Isolation and genetic analysis of resistant mutants to the benzidazole fungicide benomyl inCoprinus cinereus. Curr. Microbiol.18: 215–218.

    Article  CAS  Google Scholar 

  • Kamada, T., Sumiyoshi, T. and Takemaru, T. 1989b. Mutations in β-tubulin block transhyphal migration of nuclei in dikaryosis in the homobasidiomyceteCoprinus cinereus. Plant Cell Physiol.30: 1073–1080.

    Google Scholar 

  • Kamada, T., Hirami, H., Sumiyoshi, T., Tanabe, S. and Takemaru, T. 1990. Extragenic suppressor mutations of a β-tubulin mutation in the basidiomyceteCoprinus cinereus: isolation and genetic and biochemical analyses. Curr. Microbiol.20: 223–228.

    Article  CAS  Google Scholar 

  • Kamada, T., Hirai, K. and Fujii, M. 1993. The role of the cytoskeleton in the pairing and positioning of the two nuclei in the apical cell of the dikaryon of the basidiomyceteCoprinus cinereus. Exp. Mycol.17: 338–344.

    Article  Google Scholar 

  • Koenraadt, H., Somerville, S. C. and Jones, A. L. 1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains ofVenturia inaequalis and other plant pathogenic fungi. Phytopathology82: 1348–1354.

    Google Scholar 

  • Lee, V. D. and Huang, B. 1990. Missense mutations at lysine 350 in β2-tubulin confer altered sensitivity to microtubule inhibitors inChlamydomonas. Plant Cell2: 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  • May, G., Le Chevanton, L. and Pukkila, P. J. 1991. Molecular analysis of theCoprinus cinereus mating typeA factor demonstrates an unexpectedly complex structure. Genetics128: 529–538.

    PubMed  CAS  Google Scholar 

  • May, G. S., Tsang, M. L.-S., Smith, H., Fidel, S. and Morris, N. R. 1987.Aspergillus nidulans β-tubulin genes are unusually divergent. Gene55: 231–243.

    Article  PubMed  CAS  Google Scholar 

  • Neff, N. F., Thomas, J. H., Grisafi, P. and Botstein, D. 1983. Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell33: 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Nogales, E., Wolf, S. G. and Downing, K. H. 1998. Structure of the αβ tubulin dimer by electron crystallography. Nature391: 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Orbach, M. J., Porro, E. B. and Yanofsky, C. 1986. Cloning and characterization of the gene for β-tubulin from a benomyl-resistant mutant ofNeurospora crassa and its use as a dominant selectable marker. Mol. Cell Biol.6: 2452–2461.

    PubMed  CAS  Google Scholar 

  • Pukkila, P. J. 1993. Methods of genetic manipulation inCoprinus cinereus. In: Culture, collection and breeding of edible mushrooms, (ed. by Chang, S.-T., Buswell, J. A. and Miles, P. G.), pp. 249–264. Gordon and Breach, Philadelphia.

    Google Scholar 

  • Rao, P. S. and Niederpruem, D. J. 1969. Carbohydrate metabolism during morphogenesis ofCoprinus lagopus (sensu Buller). J. Bacteriol.100: 1222–1228.

    PubMed  CAS  Google Scholar 

  • Russo, P., Juuti, J. T. and Raudaskoski, M. 1992. Cloning, sequence and expression of a β-tubulin-encoding gene in the homobasidiomyceteSchizophyllum commune. Gene119: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Shearwin, K. E. and Timasheff, S. N. 1994. Effect of colchicine analogs on the dissociation of αβ tubulin into subunits: the locus of colchicine binding. Biochemistry33: 894–901.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, D. S. and Huffaker, T. C. 1992. Astral microtubules are not required for anaphase B inSaccharomyces cerevisiae. J. Cell Biol.119: 379–388.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, S. and Kamada, T. 1994. The role of astral microtubules in conjugate division in the dikaryon ofCoprinus cinereus. Exp. Mycol.18: 338–348.

    Google Scholar 

  • Thomas, J. H., Neff, N. F. and Botstein, D. 1985. Isolation and characterization of mutations in the β-tubulin gene ofSaccharomyces cerevisiae. Genetics112: 715–734.

    Google Scholar 

  • Zolan, M. E. and Pukkila, P. J. 1986. Inheritance of DNA methylation inCoprinus cinereus. Mol. Cell Biol.6: 195–200.

    PubMed  CAS  Google Scholar 

  • Zolan, M. E., Crittenden, J. R., Heyler, N. K. and Seitz, L. C. 1992. Efficient isolation and mapping ofrad genes of the fungusCoprinus cinereus using chromosome-specific libraries. Nucleic Acids Res.20: 3993–3999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The DDBJ/GeneBank/EMBL accession number for the sequence reported in this paper is AB000116.

About this article

Cite this article

Matsuo, T., Yamamoto, Y., Muraguchi, H. et al. Effects of amino-acid substitutions in β tubulin on benomyl sensitivity and microtubule functions inCoprinus cinereus . Mycoscience 40, 241–249 (1999). https://doi.org/10.1007/BF02463961

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463961

Key Words

Navigation