Skip to main content
Log in

Large neostriatal neurons in humans and their possible role in neuronal networks

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The Golgi method was used to study the structure of large neostriatal neurons in adult humans. Four types of large interneurons were found (spider cells, hairy cells, asymmetric fan cells, and giant stretched cells), along with two types of large projection cells (large reticular cells with spines and giant reticular cells with smooth dendrites). The structural features and possible mediators of these cells are discussed, along with their roles in neostriatal neuronal networks and in the development of pathological symptoms in chorea and progressive supranuclear paralysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Ermolenko, G. A. Kasabov, T. P. Pavlidis, and N. E. Lebedeva, “Afferent projections of the caudate nucleus to the cerebral cortex in the monkey,” Arkh. Anat., Gistol. Émbriol.,71, No. 8, 9–14 (1976).

    CAS  Google Scholar 

  2. T. A. Leontovich, “On the fine structure of subcortical nodes,” Zh. Nevropatol. Psikh.,5, No. 2, 168–178 (1954).

    Google Scholar 

  3. T. Leontovich, “Morphology of subcortical forebrain Golgi type II neurons,” in: Neuron Concept Today, J. Szentagothai, J. Hamori, and E. Vizi (eds.), Hungarian Academy of Sciences Publishing House, Budapest (1976).

    Google Scholar 

  4. T. A. Leontovich, The Neuronal Organization of Subcortical Formations of the Forebrain [in Russian], Meditsina, Moscow (1978).

    Google Scholar 

  5. T. A. Leontovich, “The internal structural differentiation of the tegmentum in carnivores and humans,” Fiziol. Zh. im. I. M. Sechenova,80, No. 1, 23–30 (1994).

    PubMed  CAS  Google Scholar 

  6. T. A. Leontovich and E. G. Zvegintseva, “Quantitative analysis of the structure of dendritic branches in striatum neurons,” Byull, Éksp. Biol. Med., No. 10, 498–501 (1985).

    Google Scholar 

  7. T. A. Leontovich, A. A. Fedorov, and E. A. Morozov, “Morphometric analysis of striatal neurons in a comparative series of mammals and humans,” in: The Striatal System and Behavior in Normal Conditions and Pathology [in Russian], Leningrad (1988).

  8. Yu. K. Mukhina, E. I. Mukhin, and T. A. Leontovich, “The efferent connections of the striatum with the EP field of the temporal cortex of the cat,” Arkh. Anat., Gistol. Émbriol.,91, No. 7, 5–14 (1986).

    Google Scholar 

  9. E. I. Rodionova, I. N. Pigarev, and T. A. Leontovich, “The effects of electrical microstimulation of zones containing cells of different types in the caudate nucleus,” Neirofiziologiya,22, No. 2, 162–171 (1990).

    CAS  Google Scholar 

  10. A. Abercrombie, “Estimation of nuclear population from microtome sections,” Anat. Rec.,94, 239–247 (1946).

    Article  Google Scholar 

  11. A. Altar, “Nerve growth factor and the neostriatum,” Progr. Neuro-Psychopharmacol. Biol. Psychiat.,15, 157–169 (1991).

    CAS  Google Scholar 

  12. T. Beach and E. McGeer, “The distribution of substance P in the primate Basal Ganglia: an immunohistochemical study of baboon and human brain,” Neuroscience,13, 29–52 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. J. Bolam, “Synapses of identified neurons in the neostriatum,” in: Functions of the Basal Ganglia, London (1984).

  14. J. Bolam, “Cholinergic neurons in the striatum and basal forebrain receive direct synaptic input from GABA-containing axon terminals,” Neurosci. Let. Suppl.,36, 9 (1989).

    Google Scholar 

  15. J. Bolam, C. Ingham, P. Izzo, A. Levey, D. Rye, A. Smith, and B. Wainer, “Substance P-containing terminals in synaptic contact with cholinergic neurones in the neostriatum and basal forebrain,” Brain Res.,397, 279–289 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. H. Braak and E. Braak, “Neuronal types in the striatum of man,” Cell Tiss. Res.,227, 319–342 (1982).

    Article  CAS  Google Scholar 

  17. M. Di Figlia, “Synaptic organization of cholinergic neurons in monkey neostriatum,” J. Comp. Neurol.,255, 245–258 (1987).

    Article  Google Scholar 

  18. R. Dimova and K. Usunoff, “Cortical projection of giant neostriatal neurons in the cat,” Brain Res. Bull.,22, 489–499 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. M. Eder, T. Vizkelety, and T. Tombol, “Nerve cells of the rabbit, cat, monkey and human caudate nucleus: Golgi study,” Acta Morphol. Acad. Sci. Hung.,28, 337–363 (1980).

    PubMed  CAS  Google Scholar 

  20. R. Ferrante, M. Beal, N. Kowall, E. Richardson, and J. Martin, “Sparing of acetylcholinesterase-containing striatal neurons in Huntington's disease,” Brain Res.,44, 162–166 (1987).

    Article  Google Scholar 

  21. R. Ferrante, N. Kowall, M. Beal, J. Martin, E. Bird, and E. Richardson, “Morphological and histochemical characteristics of a spared subset of striatal neurons in Huntington's disease,” J. Neuropathol., Exp. Neurol.,46, 12–27 (1987).

    CAS  Google Scholar 

  22. A. Flaherty and A. Graybiel, “Output architecture of the primate putamen,” J. Neurosci.,13, 3222–3237 (1993).

    PubMed  CAS  Google Scholar 

  23. G. Graveland, R. Williams, and M. Di Figlia, “A Golgi study of the human neostriatum,” J. Comp. Neurol.,234, 317–333 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. G. Graveland, R. Williams, and M. Di Figlia, “Evidence for degenerative and regenerative changes in neostriatal neurons in Huntington's disease,” Science,227, 770–773 (1985).

    PubMed  CAS  Google Scholar 

  25. E. Hirsch, A. Graybiel, L. Hirsch, C. Duyckaerts, and A. Yves, “Striosomes and extrastriosomal matrix contain different amounts of immunoreactive choline acetyltransferase in the human striatum,” Neurosci. Lett.,96, 145–150 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. A. Jayaraman, “Anatomical evidence for cortical projections from striatum in the cat,” Brain Res.,195, 384–401 (1980).

    Article  Google Scholar 

  27. H. Kiyama, A. Seto-Ohshima, and P. Emson, “Calbindin D28k as a marker of the degeneration of the striato-nigral pathway in Huntington's disease,” Brain Res.,525, 209–214 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. N. Kowall, R. Ferrante, M. Beal, J. Richardson, M. Sofroniew, A. Cuello, and S. Martin, “Neuropeptide Y, somatostatin and reduced nicotinamide adenine dinucleotide phosphate diaphorase in the human striatum: a combined immunocytochemical and enzyme histochemical study,” Neurosci.,20, 817–828 (1987).

    Article  CAS  Google Scholar 

  29. H. Lange, G. Thorner, A. Hopf, and K. Schroder, “Morphometric studies in the neuropathological changes in choreatic diseases,” J. Neurol. Sci.,28, 401–425 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. J. Martin, “Huntington's disease: new approach to an old problem,” Neurology,34, 1059–1072 (1984).

    PubMed  CAS  Google Scholar 

  31. J. McCulloch, P. Kelly, R. Uddman, and L. Edvinsson, “Functional role for vasoactive intestinal polypeptide in the caudate nucleus,” Proc. Nat. Acad. Sci. USA.,80, 1472–1476 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. V. Misgeld, M. Weiler, D. Cheong, and L. Bak, “Intrinsic cholinergic excitation in the rat striatum: pre- and postsynaptic receptors,” Adv. Neurology,40, 123–130 (1984).

    CAS  Google Scholar 

  33. K. Oyanagi, H. Takahashi, K. Wakabayashi, and F. Ikuta, “Selective decrease of large neurons in the neostriatum in progressive supranuclear palsy,”458, 218–223 (1988).

    CAS  Google Scholar 

  34. P. Phelps, C. Houser, and J. Vaughn, “Immunocytochemical localization of choline acetyltransferase within the rat neostriatum,” J. Comp. Neurol.,238, 286–307 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. S. Ramon y Cajal, Histologie du systeme nerveux de l'homme et des vertebres, Maloine, Paris (1911).

    Google Scholar 

  36. K. Roney, A. Schiebel, and G. Shaw, “Dendritic bundles: survey of anatomical experiments and physiological theories,” Brain Res.,1, 225–271 (1979).

    Article  Google Scholar 

  37. S. Schiffman and J. Vanderhaeghen, “Immunocytochemical detection of GABA-ergic nerve cells in the human striatum and cerebellum using a gamma-aminobutyric acid antiserum,” Neurochem. Int.,17, 101–106 (1990).

    Article  Google Scholar 

  38. Y. Smith and J. Bolam, “The heural network of the basal ganglia as revealed by the study of synaptic connections of identified neurons,”13, 254–258 (1990).

    Google Scholar 

  39. J. Steele, “Progressive supranuclear palsy,” in: Handbook of Clinical Neurology, P. Vinken (ed.) (1975).

  40. C. Wilson, H. Chang, and S. Kitai, “Firing patterns and synaptic potentials of identified giant interneurons in the rat neostriatum,” J. Neurosci.10, 508–519 (1990).

    PubMed  CAS  Google Scholar 

  41. J. Yelnik, C. Francois, G. Percheron, and D. Tande, “Morphological taxonomy of the neurons of the primate striatum,” J. Comp. Neurol.,313, 273–294 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. J. Yelnik, G. Percheron, C. Francois, and A. Garnier, “Cholinergic neurons of the rat and primate striatum are morphologically different,” Progr. Brain Res.,99, 25–34 (1993).

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

Science Research Institute of the Brain, Russian Academy of Medical Sciences, 5 Obukh Lane, 103064 Moscow. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 83, No. 1–2, pp. 44–52, January–February, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leontovich, T.A. Large neostriatal neurons in humans and their possible role in neuronal networks. Neurosci Behav Physiol 28, 252–259 (1998). https://doi.org/10.1007/BF02462954

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462954

Key words

Navigation