Skip to main content

Hierarchical Organization of Neocortical Neuron Types

  • Chapter
  • First Online:
Cortical Development

Abstract

The neocortex consists of many diverse neuron populations distributed across cortical layers having specialized connectivity and projection patterns. Glutamatergic pyramidal cells, which are cortical projection neurons, reside in all layers except layer 1, while GABAergic nonpyramidal cells are ubiquitous throughout all cortical layers. These broad classes of excitatory and inhibitory neurons comprise specialized neuron subtypes that have specific morphological, physiological, and chemical properties. However, while much is now known about the types in the cortex, less is known regarding the rules governing their selective connectivity into cortical and extracortical circuits. In layer 5 of the rat frontal cortex, several distinct populations of pyramidal cells are identifiable based on their distinct extracortical projections, firing characteristics, morphologies, and positions within layer 5. We have characterized highly selective synaptic connectivity among and between these pyramidal cell populations, which likely contributes to their establishing and maintaining functional loops between the frontal cortex, basal ganglia, and thalamus. However, less is known about how GABAergic neuron subpopulations are selectively incorporated into cortical circuits or how they might differentially regulate cortical output to subcortical targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barth AL, Poulet JF (2012) Experimental evidence for sparse firing in the neocortex. Trends Neurosci 35:345–355

    Article  PubMed  CAS  Google Scholar 

  • Burwell RD, Amaral DG (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205

    Article  PubMed  CAS  Google Scholar 

  • Cenquizca LA, Swanson LW (2006) Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J Comp Neurol 497:101–114

    Article  PubMed  Google Scholar 

  • Cenquizca LA, Swanson LW (2007) Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 56:1–26

    Article  PubMed  CAS  Google Scholar 

  • Clark AM, Bouret S, Young AM, Richmond BJ (2012) Intersection of reward and memory in monkey rhinal cortex. J Neurosci 32:6869–6877

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625

    Article  PubMed  CAS  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12:961–974

    Article  PubMed  Google Scholar 

  • Eichenbaum H (2006) Remembering: functional organization of the declarative memory system. Curr Biol 16:R643–R645

    Article  PubMed  CAS  Google Scholar 

  • Fino E, Packer AM, Yuste R (2012) The logic of inhibitory connectivity in the neocortex. Neuroscientist. doi:10.1177/1073858412456743

    PubMed  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177

    Article  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  PubMed  CAS  Google Scholar 

  • Glimcher PW (2011) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci U S A 108(Suppl 3):15647–15654

    Article  PubMed  CAS  Google Scholar 

  • Gulledge AT, Kawaguchi Y (2007) Phasic cholinergic signaling in the hippocampus: functional homology with the neocortex? Hippocampus 17:327–332

    Article  PubMed  CAS  Google Scholar 

  • Gulledge AT, Stuart GJ (2005) Cholinergic inhibition of neocortical pyramidal neurons. J Neurosci 25:10308–10320

    Article  PubMed  CAS  Google Scholar 

  • Gulledge AT, Park SB, Kawaguchi Y, Stuart GJ (2007) Heterogeneity of phasic cholinergic signaling in neocortical neurons. J Neurophysiol 97:2215–2229

    Article  PubMed  CAS  Google Scholar 

  • Hattox AM, Nelson SB (2007) Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J Neurophysiol 98:3330–3340

    Article  PubMed  Google Scholar 

  • Hirai Y, Morishima M, Karube F, Kawaguchi Y (2012) Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas. J Neurosci 32:1898–1913

    Article  PubMed  CAS  Google Scholar 

  • Houk JC (2010) Voluntary movement: control, learning and memory. In: Encyclopedia of behavioral neuroscience. Academic, Oxford, pp 455–458

    Chapter  Google Scholar 

  • Jones EG (1984) Laminar distribution of output cells. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex, vol 1, Cerebral cortex. Plenum, New York, pp 521–553

    Chapter  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  PubMed  CAS  Google Scholar 

  • Karube F, Kubota Y, Kawaguchi Y (2004) Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. J Neurosci 24:2853–2865

    Article  PubMed  CAS  Google Scholar 

  • Kasper EM, Larkman AU, Lübke J, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets. J Comp Neurol 339:459–474

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Karube F (2008) Structures and circuits: cerebral cortex, inhibitory cells. In: Squire L (ed) The new encyclopedia of neuroscience. Elsevier, Oxford

    Google Scholar 

  • Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31:277–287

    Article  PubMed  Google Scholar 

  • Kawaguchi Y, Karube F, Kubota Y (2006) Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb Cortex 16:696–711

    Article  PubMed  Google Scholar 

  • Kita T, Kita H (2012) The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 32:5990–5999

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y (2007) Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci 27:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Karube F, Nomura M, Gulledge AT, Mochizuki A, Schertel A, Kawaguchi Y (2011a) Conserved properties of dendritic trees in four cortical interneuron subtypes. Sci Rep 1:89

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Shigematsu N, Karube F, Sekigawa A, Kato S, Yamaguchi N, Hirai Y, Morishima M, Kawaguchi Y (2011b) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21:1803–1817

    Article  PubMed  Google Scholar 

  • Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex 19:2065–2077

    Article  PubMed  Google Scholar 

  • Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24:8289–8299

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurons in the developing rat neocortex. J Physiol 500:409–440

    PubMed  CAS  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95:5323–5328

    Article  PubMed  CAS  Google Scholar 

  • Miyashita Y (2004) Cognitive memory: cellular and network machineries and their top-down control. Science 306:435–440

    Article  PubMed  CAS  Google Scholar 

  • Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26:4394–4405

    Article  PubMed  CAS  Google Scholar 

  • Morishima M, Morita K, Kubota Y, Kawaguchi Y (2011) Highly differentiated projection-specific cortical subnetworks. J Neurosci 31:10380–10391

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Morishima M, Sakai K, Kawaguchi Y (2012) Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci 35:457–467

    Article  PubMed  CAS  Google Scholar 

  • Otsuka T, Kawaguchi Y (2008) Firing-pattern-dependent specificity of cortical excitatory feed-forward subnetworks. J Neurosci 28:11186–11195

    Article  PubMed  CAS  Google Scholar 

  • Otsuka T, Kawaguchi Y (2009) Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J Neurosci 29:10533–10540

    Article  PubMed  CAS  Google Scholar 

  • Otsuka T, Kawaguchi Y (2011) Cell diversity and connection specificity between callosal projection neurons in the frontal cortex. J Neurosci 31:3862–3870

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Jones EG (1984) Classification of cortical neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex, vol 1, Cerebral cortex. Plenum, New York, pp 107–121

    Google Scholar 

  • Reiner A, Hart NM, Lei W, Deng Y (2010) Corticostriatal projection neurons – dichotomous types and dichotomous functions. Front Neuroanat 4:142

    Article  PubMed  Google Scholar 

  • Rockland KS (1997) Elements of cortical architecture: hierarchy revisited. In: Rockland KS, Kaas JH, Peters A (eds) Extrastriate cortex in primates, vol 12, Cerebral cortex. Plenum, New York, pp 243–293

    Chapter  Google Scholar 

  • Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19:2380–2395

    Article  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Scimeca JM, Badre D (2012) Striatal contributions to declarative memory retrieval. Neuron 75:380–392

    Article  PubMed  CAS  Google Scholar 

  • Thomson AM (2010) Neocortical layer 6, a review. Front Neuroanat 4:13

    PubMed  Google Scholar 

  • Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14

    Article  PubMed  Google Scholar 

  • Uematsu M, Hirai Y, Karube F, Ebihara S, Kato M, Abe K, Obata K, Yoshida S, Hirabayashi M, Yanagawa Y, Kawaguchi Y (2008) Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic Venus-expressing rats. Cereb Cortex 18:315–330

    Article  PubMed  Google Scholar 

  • Ueta Y, Otsuka T, Morishima M, Ushimaru M, Kawaguchi Y (2013) Multiple layer 5 pyramidal cell subtypes relay cortical feedback from secondary to primary motor areas in rats. Cereb Cortex. doi:10.1093/cercor/bht088

  • Veinante P, Deschênes M (2003) Single-cell study of motor cortex projections to the barrel field in rats. J Comp Neurol 464:98–103

    Article  PubMed  Google Scholar 

  • Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:455–463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Drs. Allan T. Gulledge, Yasuharu Hirai, Yoshiyuki Kubota, Kenji Morita, Mieko Morishima, and Takeshi Otsuka for their collaboration and discussion. This work was supported by JST, CREST, and Grant-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Kawaguchi, Y. (2013). Hierarchical Organization of Neocortical Neuron Types. In: Kageyama, R., Yamamori, T. (eds) Cortical Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54496-8_8

Download citation

Publish with us

Policies and ethics