Memory in idiotypic networks due to competition between proliferation and differentiation

  • Bernhard Sulzer
  • J. Leo van Hemmen
  • Avidan U. Neumann
  • Ulrich Behn


A model employing separate dose-dependent response functions for proliferation and differentiation of idiotypically interacting B cell clones is presented. For each clone the population dynamics of proliferating B cells, non-proliferating B cells and free antibodies are considered. An effective response function, which contains the total impact of proliferation and differentiation at the fixed points, is defined in order to enable an exact analysis. The analysis of the memory states is restricted in this paper to a two-species system. The conditions for the existence of locally stable steady states with expanded B cell and antibody populations are established for various combinations of different field-response functions (e.g. linear, saturation, log-bell functions). The stable fixed points are interpreted as memory states in terms of immunity and tolerance. It is proven that a combination of linear response functions for both proliferation and differentiation does not give rise to stable fixed points. However, due to competition between proliferation and differentiation saturation response functions are sufficient to obtain two memory states, provided proliferation preceeds differentiation and also saturates earlier. The use of log-bell-shaped response functions for both proliferation and differentiation gives rise to a “mexican-hat” effective response function and allows for multiple (four to six) memory states. Both a primary response and a much more pronounced secondary response are observed. The stability of the memory states is studied as a function of the parameters of the model. The attractors lose their stability when the mean residence time of antibodies in the system is much longer than the B cells' lifetime. Neither the stability results nor the dynamics are qualitatively chanbed by the existence of non-proliferating B cells: memory states can exist and be stable without non-proliferating B cells. Nevertheless, the activation of non-proliferating B cells and the competition between proliferation and differentiation enlarge the parameter regime for which stable attractors are found. In addition, it is shown that a separate activation step from virgin to active B cells renders the virgin state stable for any choice of biologically reasonable parameters.


Response Function Memory State Saturation Function Stable Steady State Immune Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Behn, U. and J. L. van Hemmen. 1989a. Network description of the immune system: Dormant B cells stabilize cycles.J. Stat. Phys. 56, 533–545.MATHCrossRefGoogle Scholar
  2. Behn, U. and J. L. van Hemmen. 1989b. On the theory of networks for the immune system. In:Dynamical Networks. W. Ebeling and M. Peschel (Eds.), pp. 162–172. Berlin: Academic Verlag.Google Scholar
  3. Behn, U., J. L. van Hemmen and B. Sulzer. 1992. Memory B cells stabilize cycles in a repressive network. InTheoretical and Experimental Insight into Immunology. A. S. Perelson, G. Weisbuch and A. Coutinho (Eds), pp. 249–260. Berlin: Springer.Google Scholar
  4. Behn, U., J. L. van Hemmen and B. Sulzer. 1993. Memory to antigenic challenge of the immune system: Synergy of idiotypic interactions and memory B cells.J. theor. Biol., in press.Google Scholar
  5. Bell, G. 1970. Mathematical model of clonal selection and antibody production.J. theor. Biol. 29, 191–232.CrossRefGoogle Scholar
  6. Bell, G. 1971. Mathematical model of clonal selection and antibody production. II–III.J. theor. Biol. 33, 339–398.CrossRefGoogle Scholar
  7. Coutinho, A. 1989. Beyond clonal selection and network.Immunol. Rev. 110, 63–87.CrossRefGoogle Scholar
  8. De Boer, R. J. 1983. GRIND. Great Integrator Differential Equations, Bioinformatics Group, University of Utrecht, The NetherlandsGoogle Scholar
  9. De Boer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246.MATHCrossRefGoogle Scholar
  10. De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408.MATHCrossRefGoogle Scholar
  11. De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1990. A simple idiotypic network model with complex dynamics.Chem. Engng Sci. 45, 2375–2382.CrossRefGoogle Scholar
  12. De Boer, R. J., A. U. Neumann, A. S. Perelson, L. A. Segel and G. Weisbuch. 1992. Recent approaches to immune networks. Santa Fe Institute Working Papers Series, 91-10-040.Google Scholar
  13. De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1993a. Immune network behavior I: From stationary states to limit cycle oscillations.Bull. math. Biol. 55, 745–780.MATHCrossRefGoogle Scholar
  14. De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1993b. Immune network behavior II: From oscillations to chaos and stationary states.Bull. Math. Biol. 55, 781–816.MATHCrossRefGoogle Scholar
  15. Goldstein, B. 1988. Desensitization, histamine release and the aggregation of IgE on human basophiles. In:Theoretical Immunology, Part Two,SFI Studies in the Science of Complexity. A. S. Perelson (Ed.), Vol. III, pp. 3–40, Redwood City, CA: Addison-Wesley.Google Scholar
  16. Gray, D. and T. Leanderson. 1990. Expansion, selection and maintenance of memory B-cell clones. In:Immunological Memory, Current Topics in Microbiol. and Immunol. D. Gray and J. Sprent (Eds), Vol. 159, pp. 1–17.Google Scholar
  17. Grossman, Z., R. Asofsky and C. DeLisi. 1980. The dynamics of antibody secreting cell production: Regulation of growth and oscillations in the response to T-independent antigens.J. theor. Biol. 84, 49–92.CrossRefGoogle Scholar
  18. Hoffmann, G. W. 1975. A theory of regulation and self-nonself discrimination in an immune network.Eur. J. Immunol. 5, 638–647.Google Scholar
  19. Jerne, N. K. 1974. Towards a net work theory of the immune system.Ann. Immunol. (Inst. Pasteur) 125C, 373–389.Google Scholar
  20. Jerne, N. K. 1984. Idiotypic networks and other preconceived ideas.Immunol. Rev. 79, 5–24.CrossRefGoogle Scholar
  21. Jerne, N. K. 1985. The generative grammar of the immune system.EMBO J. 4, 243–247.Google Scholar
  22. Linton, J.-P., D. J. Decker and N. R. Klinman. 1989. Primary antibody-forming cells and secondary B cells are generated from separate precursor cell populations.Cell 59, 1049–1059.CrossRefGoogle Scholar
  23. Merrill, S. J. 1978. A model of the stimulation of B-cells by replicating antigen.Math. Biosci. 41, 125.MATHMathSciNetCrossRefGoogle Scholar
  24. Murray, J. D. 1989.Mathematical Biology, pp. 702–705. Berlin: Springer.MATHGoogle Scholar
  25. Neumann, A. U. and G. Weisbuch. 1992a. Window automata analysis of population dynamics of the immune system.Bull. math. Biol. 54, 21–44.MATHGoogle Scholar
  26. Neumann, A. U. and G. Weisbuch. 1992b. Dynamics and topology of immune networks.Bull. math. Biol. 54, 699–726.MATHCrossRefGoogle Scholar
  27. Perelson, A. S. 1988. Theoretical Immunology, Part Two,SFI Studies in the Science of Complexity. A. S. Perelson (Ed.), Vol. III, Redwood City, CA: Addison-Wesley.Google Scholar
  28. Perelson, A. S. 1989. Immune network theory.Immunol. Rev. 110, 5–36.CrossRefGoogle Scholar
  29. Perelson, A. S. and C. DeLisi. 1980. Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110.MATHMathSciNetCrossRefGoogle Scholar
  30. Perelson, A. S., M. Mirmirani, G. F. Oster. 1976. Optimal strategies in immunology. I. B-cell differentiation and proliferation.J. math. Biol. 3, 325–367.MATHMathSciNetGoogle Scholar
  31. Prikrylová, D., M. Jilek and J. Waniewski. 1992.Mathematical Modeling of the Immune Response, pp. 91–112. Boca Raton, FL: CRC Press.MATHGoogle Scholar
  32. Rasure, J. and M. Young. 1992. An open environment for image processing software development. In:SPIE Proceedings, Vol. 1659.Google Scholar
  33. Richter, P. H. 1975. A network theory of the immune system.Eur. J. Immunol. 5, 350–354.Google Scholar
  34. Richter, P. H. 1978. The network idea and the immune response. In:Theoretical Immunology. G. I. Bell, A. S. Perelson and G. H. Pimbley (Eds), pp. 539–569. New York: Marcel Dekker.Google Scholar
  35. Schittek, B. and K. Rajewski. 1990. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors.Nature 346, 749–752.CrossRefGoogle Scholar
  36. Segel, L. A. and A. S. Perelson. 1990. Some reflections on memory in shape space. In:Theories of Immune Networks. H. Atlan and I. R. Cohen (Eds.), pp. 63–70. Berlin, Springer.Google Scholar
  37. Segel, L. A. and A. S. Perelson. 1991. Exploiting the diversity of time scales in the immune system: A B-cell antibody model.J. stat. Phys. 63, 1113–1131.CrossRefGoogle Scholar
  38. Varela, F. J. and A. Coutinho. 1991. Second generation immune networks.Immunol. Today 12, 159–166.Google Scholar
  39. Varela, F. J. and J. Stewart. 1990. Dynamics of a class of immune networks: Global stability of idiotype interactions.J. theor. Biol. 144, 93–101.MathSciNetGoogle Scholar
  40. Vitetta, E. S., M. T. Berton, C. Burger, M. Kepron, W. T. Lee and X.-M. Yin. 1991. Memory B and T cells.Ann. Rev. Immunol. 9, 193–217.CrossRefGoogle Scholar
  41. Weisbuch, G., R. J. de Boer and A. S. Perelson. 1990. Localized memory in idiotypic networks.J. theor. Biol. 146, 483–499.Google Scholar

Copyright information

© Society for Mathematical Biology 1993

Authors and Affiliations

  • Bernhard Sulzer
    • 2
  • J. Leo van Hemmen
    • 1
  • Avidan U. Neumann
    • 3
  • Ulrich Behn
    • 4
  1. 1.Physik-Department der TU MünchenGarching bei München, MünchenGermany
  2. 2.Department of Applied MathematicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Santa Fe InstituteSanta FeU.S.A.
  4. 4.Sektion Physik der Universität LeipzigLeipzigGermany

Personalised recommendations