Skip to main content
Log in

Turing's theory in morphogenesis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Bifurcation theoretical and numerical analyses of one of Turing's models are performed. It is shown that at the first instability point of the homogeneous state the bifurcating branches aresubcritical, and thus emerge as unstable solutions. This, together with the presence of concentration-independent sink terms is responsible for the solutions becoming negative ast→∞. It is pointed out that this deficiency is an accident related to the choice of the model, and that the general idea of symmetry-breaking is perfectly compatible with the generation of regular morphogenetic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Auchmuty, J. F. G. 1976. University of Essex, preprint.

  • Auchmuty, J. F. G. and G. Nicolis. 1975. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations—I. Evolution Equations and the Steady State Solutions.”Bull. Math. Biol.,37, 323–365.

    Article  MATH  MathSciNet  Google Scholar 

  • Auchmuty, J. F. G. and G. Nicolis. 1976. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations—III Chemical Oscillations”Bull. Math. Biol.,38, 325–350.

    MATH  MathSciNet  Google Scholar 

  • Babloyantz, A. and J. Hiernaux. 1975. “Models for Cell Differentiation and Generation of Polarity in Diffusion Governed Morphogenetic Fields.”Bull. Math. Biol.,37, 637–657.

    Article  MATH  Google Scholar 

  • Bard, J. and I. Lauder. 1974. “How well does Turing's Theory of Morphogenesis work?”J. Theor. Biol.,45 501–531.

    Article  Google Scholar 

  • Cooke, J. 1975. “Control of Somite Number During Morphogenesis of a Vertebrate,Xenopus Leavis.”Nature,254, 196–199.

    Article  Google Scholar 

  • Cooke, J. and E. C. Zeeman. 1976. “A Clock and Wavefront Model for Control of the Number of Repeated Structures during Animal Morphogenesis.”J. Theor. Biol.,58, 455–476.

    Google Scholar 

  • Fife, P. 1977. Proceedings of NSF-CBMS Regional Conference on Nonlinear Diffusion,Res. Notes Math.,14 81–122.

    Google Scholar 

  • Gierer, A. and H. Meinhardt. 1972. “A Theory of Biological Pattern Formation.”Kybernetik,12, 30–39.

    Article  Google Scholar 

  • Glansdorff, P. and I. Prigogine. 1971.Thermodynamics of Structure, Stability and Fluctuations. New-York: Wiley-Interscience.

    Google Scholar 

  • Herschkowitz-Kaufman, M. 1975. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations—II Steady State Solutions and Comparison with Numerical Simulations.”Bull. Math. Biol.,37, 589–636.

    Article  MATH  MathSciNet  Google Scholar 

  • Hiernaux, J. 1976. “Modèles Théoriques de la Différenciation Cellulaire et de la Morphogénèse. Ph.D. Thesis (Université Libre de Bruxelles).

  • Kauffman, S. A., R. M. Shymko and K. Trabert. 1978. “Control of Sequential Compartment Formation inDrosophilia.”Science,199, 259–270.

    Google Scholar 

  • Martinez, H. M. 1972. “Morphogenesis and Chemical Dissipative Structures: A Computer Simulated Case Study”J. Theor. Biol.,36, 701–725.

    Article  Google Scholar 

  • Maynard Smith, J. and K. C. Sondhi 1961. “The Arrangement of Bristles inDrosophila.”J. Embryol. Exp. Morph.,9, 661–671.

    Google Scholar 

  • Meinhardt, H. and A. Gierer. 1974. “Application of a Theory of Biological Pattern Formation Based on Lateral Inhibition.”J. Cell. Sci.,15, 321–346.

    Google Scholar 

  • Minorski, N. 1962. Non Linear Oscillation. Princeton: Van Nostrand.

    Google Scholar 

  • Nicolis, G. and R. Lefever. 1975. “Membranes, Dissipative Structures and Evolution”.Adv. Chem. Phys., vol. 29. New-York: Wiley-Interscience.

    Google Scholar 

  • — and I. Prigogine. 1977.Self-Organization in Nonequilibrium Systems. New York: Wiley.

    Google Scholar 

  • Othmer, H. G. 1977. “Current Theories of Pattern Formation.”Lect. Math. Life Sci.,9, 57–87.

    MATH  MathSciNet  Google Scholar 

  • Prigogine, I. and G. Nicolis. 1967. “On Symmetry-Breaking Instabilities in Dissipative Systems.”J. Chem. Phys.,46, 3542–3550.

    Article  Google Scholar 

  • — and R. Lefever. 1968. “Symmetry-Breaking Instabilities in Dissipative System.”J. Chem. Phys.,48, 1695–1700.

    Article  Google Scholar 

  • Sattinger, D. 1973. “Topics in Stability and Bifurcation Theory.” Lecture Notes in Mathematics, vol. 309. Berlin: Springer.

    Google Scholar 

  • Turing, A. M. 1952. “The Chemical Basis of Morphogenesis.”Phil. Trans. R. Soc., London, B 237, 37–72.

    Google Scholar 

  • Wolpert, L. 1969. “Positional Information and the Spatial Pattern of Cellular Differentiation.”J. Theor. Biol.,25, 1–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erneux, T., Hiernaux, J. & Nicolis, G. Turing's theory in morphogenesis. Bltn Mathcal Biology 40, 771–789 (1978). https://doi.org/10.1007/BF02460606

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460606

Keywords

Navigation