Skip to main content
Log in

Analysis of pattern formation using numerical continuation

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter L, which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries. We define and classify them. Our goal is to calculate a global bifurcation diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Allgower, K. Georg: Introduction to Numerical Continuation Methods. Classics in Applied Mathematics 45. SIAM, Philadelphia, 2003.

    Book  MATH  Google Scholar 

  2. R. E. Baker, E. A. Gaffney, P. K. Maini: Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21 (2008), R251–R290.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Böhmer, W. Govaerts, V. Janovský: Numerical detection of symmetry breaking bifurcation points with nonlinear degeneracies. Math. Comput. 68 (1999), 1097–1108.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Chossat, R. Lauterbach: Methods in Equivariant Bifurcations and Dynamical Systems. Advanced Series in Nonlinear Dynamics 15. World Scientific, Singapore, 2000.

    MATH  Google Scholar 

  5. A. Dhooge, W. Govaerts, Y. A. Kuznetsov: MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29 (2003), 141–164.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Dhooge, W. Govaerts, Y. A. Kuznetsov: MATCONT and CL-MATCONT: Continuation Toolboxes in MATLAB. University Gent, Gent, 2011.

    Google Scholar 

  7. A. Gierer, H. Meinhardt: A theory of biological pattern formation. Kybernetik 12 (1972), 30–39.

    Article  MATH  Google Scholar 

  8. M. Golubitsky, D. G. Schaeffer: Singularities and Groups in Bifurcation Theory. I. Applied Mathematical Sciences 51. Springer, New York, 1985.

    Book  MATH  Google Scholar 

  9. M. Golubitsky, I. Stewart, D. G. Schaeffer: Singularities and Groups in Bifurcation Theory. II. Applied Mathematical Sciences 69. Springer, New York, 1988.

    Book  MATH  Google Scholar 

  10. W. J. F. Govaerts: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia, 2000.

    Book  MATH  Google Scholar 

  11. V. Janovský, P. Plecháč: Numerical applications of equivariant reduction techniques. Bifurcation and Symmetry: Cross Influence Between Mathematics and Applications. International Series of Numerical Mathematics 104. Birkhäuser, Basel, 1992, pp. 203–213.

    MATH  Google Scholar 

  12. V. Klika: Significance of non-normality-induced patterns: Transient growth versus asymptotic stability. Chaos 27 (2017), Article ID 073120, 9 pages.

  13. V. Klika, R. E. Baker, D. Headon, E. A. Gaffney: The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. Bull. Math. Biol. 74 (2012), 935–957.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Klika, M. Kozák, E. A. Gaffney: Domain size driven instability: Self-organization in systems with advection. SIAM J. Appl. Math. 78 (2018), 2298–2322.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. A. Kuznetsov: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences 112. Springer, New York, 1998.

    MATH  Google Scholar 

  16. A. Marciniak-Czochra, G. Karch, K. Suzuki: Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol. 74 (2017), 583–618.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. D. Murray: Mathematical Biology. II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics 18. Springer, New York, 2003.

    MATH  Google Scholar 

  18. J. Schnakenberg: Simple chemical reaction systems with limit cycle behaviour. J. Theoret. Biol. 81 (1979), 389–400.

    Article  MathSciNet  Google Scholar 

  19. L. N. Trefethen, M. Embree: Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton, 2005.

    Book  MATH  Google Scholar 

  20. A. M. Turing: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B, Biol. Sci. 237 (1952), 37–72.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Janovský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janovský, V. Analysis of pattern formation using numerical continuation. Appl Math 67, 705–726 (2022). https://doi.org/10.21136/AM.2022.0126-21

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2022.0126-21

Keywords

MSC 2020

Navigation