Skip to main content
Log in

Thermodynamic characteristics of a biological organism: Information value of a gene and of a protein as a measure of the efficiency and as an index of selective pressure

  • Published:
Il Nuovo Cimento D

Summary

For the treatment of the information exchanged by the biological system and the external world, the concept of information amount is not sufficient because of their remoteness from equilibrium states. Further explanations are, in fact, necessary about the effects of the reception of the message, i.e. its information value that is then necessary to define for each case. We have, therefore, defined the information value of a gene and of a protein and analysed a sample of about hundred genes looking for some significative regularity in the frequency of usage of codons and amino acids allowing us to individualize the salient characteristics of a translated sequence of codons. We have found that the most used amino acids have, on the average, a low information value and, for each amino acid type, the most used codons have a lower information value. Moreover, we can say that the composition in amino acids or in codons of a sequence useful for the biological systems is such that more frequent mutations cause the smaller variation in the phenotype. All that shows that our definitions well describe the system of transmission and reception of the information value in a biological organism and that they can be considered as an index of its efficiency, i.e. of its ability to minimize the effects of the mutation of the genotype on the phenotype.

Riassunto

Per studiare lo scambio d'informazioni tra sistemi biologici e l'ambiente esterno, il concetto di quantità di informazioni non è sufficiente a causa della lontananza dall'equilibrio di tali sistemi. Sono infatti necessarie ulteriori specificazioni per quel che riguarda gli effetti della recezione del messaggio, ovvero il valore dell'informazione che è quindi necessario definire di volta in volta. Noi abbiamo quindi definito il valore d'informazione di un gene e di una proteina e abbiamo analizzato un campione di circa 100 geni cercando regolarità significative nella frequenza di uso dei codoni e degli aminoacidi per individuare caratteristiche salienti di una sequenza di codoni che sia tradotta. Si è trovato che in media gli aminoacidi piú usati sono quelli con valore di informazione piú basso e che, per ciascun aminoacido, i codoni piú, usati sono quelli a piú basso valore d'informazione. Inoltre si può dire che la composizione in aminoacidi ed in codoni di una sequenza nucleotidica che sia effettivamente tradotta da un sistema biologico è tale che le mutazioni piú frequenti causano la piú piccola variazione del fenotipo. Tutto ciò mostra che le nostre definizioni di valore d'informazione per un gene e per una proteina descrivono efficacemente la trasmissione e la recezione di informazione in un organismo biologico. Esse possono essere considerate come indice dell'efficienza di un organismo ovvero delle sue capacità di minimizzare gli effetti di una mutazione del genotipo sul fenotipo.

Резюме

При исследовании обмена информацией между биологическими системами и внешним миром концепция кояичества информации не явлется достаточной из-за удаленности таких систем от состояния равновесия. Необходимы дополнительные объяснения эффектов получения сообщения, т.е. величины информации, которую необходимо опрелятъ для каждого случая. Мы определяем величину информации для гена и белка и анализируем образец из сотни генов в поисках закономерности в частоте употребления кодонов и аминокислот для индивидуализации характеристик транслируемой последователъности кодонов. Мы получаем, что болышинство исполъзуемых аминокислот имеет, в среднем, малую величину информации, а для каждого типа аминокислот наиболее исполъзуемые кодоны имеют менъшую величину информации. Более того, мы можем сказатъ, что композиция аминокислот или кодонов для последователъности нуклеотидов в биологических системах является такой, что наиболее частые мутации вызывают наименжшее изменение в фенотипе. Все это показывает, что наше определение величины информации для гена и белка хорошо описывает передачу и прием информации в биологических организмах. Такое определение величины информации можно рассматриватъ как индекс эффективности организма, т.е. его способностж минимизировать эффекты мутации генотипа на фенотине.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Volkenstein: Found. Phys., 7, 97 (1971).

    Article  ADS  Google Scholar 

  2. J. L. Doob: Stochastic Processes (New York, N. Y., 1953).

  3. M. Apter: Cybernetics and Development (New York, N. Y., 1966).

  4. C. E. Reid: Principles of Chemical Thermodynamics (New York, N. Y., 1960).

  5. P. Glansdorff and I. Prigogine: Thermodynamic Theory of Structure, Stability and Fluctuations (New York, N. Y., 1971).

  6. M. Eigen and D. Porschke: J. Mol. Biol., 53, 123 (1970).

    Article  Google Scholar 

  7. M. Eigen: Naturwissenschaften B, 5, 465 (1971).

    Article  ADS  Google Scholar 

  8. I. Prigogine and J. Nicolis: Q. Rev. Biophys., 4, 149 (1971).

    Article  Google Scholar 

  9. M. Volkenstein: Molecular Biophysics (New York, N. Y., 1976).

  10. M. Macchiato and A. Tramontano: Z. Naturforsch., 37, 1031 (1982).

    Google Scholar 

  11. I. H. I. C. Comprehensive Sickle cell Center U.S.A. (1979).

  12. W. Fiers, R. Coutreras, F. Duerinck, G. Haegeman, J. Merregaert, W. Min Jou, A. Raeymarkers, G. Volckaert, M. Ysebaert, J. Van de Kerckhove, F. Nolf and M. Van Montagu: Nature (London), 256, 273 (1975).

    Article  ADS  Google Scholar 

  13. W. Min Jou, W. Haegeman, M. Ysebaert and W. Fiers: Nature (London), 247, 82 (1972).

    Google Scholar 

  14. W. Fiers, R. Contreras, F. Duerinck, G. Haegeman, D. Iserentaut, J. Merregaert, W. Min Jou, F. Holemas, A. Raeymaekers, A. Van der Berghe, C. Volckaert and M. Ysebaert: Nature (London), 260, 500 (1975).

    Article  ADS  Google Scholar 

  15. G. Escarmis, P. A. Sastry and M. A. Billeter: J. Biol. Chem., 253, 8390 (1978).

    Google Scholar 

  16. G. Jouard, K. Richards, E. Mohier and P. Gerlinger: Eur. J. Biochem., 4, 521 (1970).

    Google Scholar 

  17. H. Guilley, G. Jouard, B. Kukla and K. E. Richards: Nucleic Acids Res., 6, 1287 (1979).

    Article  Google Scholar 

  18. H. Guilley and J. Briand: Cell, 15, 113 (1978).

    Article  Google Scholar 

  19. F. Sanger, G. Air, B. Barrell, N. Brown, A. Coulson, J. Fiddes, C. HutchinsonIII, P. Slocombe and M. Smith: Nature (London)265, 687 (1977).

    Article  ADS  Google Scholar 

  20. J. C. Fiddes: Sci. Am.237, 55 (1977).

    Article  Google Scholar 

  21. D. C. Shaw, J. E. Walker, F. D. Northrop, B. G. Barrell, G. N. Godsow and J. C. Fiddes: Nature (London), 272, 510 (1978).

    Article  ADS  Google Scholar 

  22. G. Godsow, B. Barrell, R. Staden and J. Fiddes: Nature (London), 276, 736 (1978).

    Google Scholar 

  23. K. Sugimoto, H. Sugusaki, T. Okamoto and M. Takanami: Nucl. Acids Res., 5, 4495 (1978).

    Article  Google Scholar 

  24. P. Van Wegenbeek and J. G. G. Schoenmakers: Nucleic Acids Res., 6, 2799 (1979).

    Article  Google Scholar 

  25. T. Huselbos and J. G. G. Schoenmakers: Nucleic Acids Res., 5, 4677 (1978).

    Article  Google Scholar 

  26. D. J. McConnel: Nucleic Acids Res., 6, 3491 (1979).

    Article  Google Scholar 

  27. R. Saer: Nature (London), 276, 301 (1978).

    Article  ADS  Google Scholar 

  28. E. Schwarz, G. Scherer, G. Hoban and H. Kössel: Nature (London), 272, 410 (1978).

    Article  ADS  Google Scholar 

  29. G. Scherer: Nucleic Acids Res., 5 3141 (1978).

    Article  Google Scholar 

  30. R. Grosschedl and E. Schwarz: Nucleic Acids Res., 6, 867 (1979).

    Article  Google Scholar 

  31. W. Fiers, R. Contreras, G. Haegeman, R. Rogiers, A. Van de Voorde, H. Van Heuverswyn, J. Van Herzeweghe, G. Volckaert and M. Ysebaert: Nature (London), 273, 113 (1978).

    Article  ADS  Google Scholar 

  32. V. B. Reddy, B. Thimmapaya, R. Dhar, K. N. Subramanian, B. S. Zain, J. Pan, P. K. Ghorsh, M. L. Celma and S. M. Weissman: Science, 200, 494 (1978).

    Article  ADS  Google Scholar 

  33. R. Dhar, I. Seif and G. Khoury: Proc. Natl. Acad. Sci. USA, 76, 565 (1979).

    Article  ADS  Google Scholar 

  34. P. Valenzuela, P. Gray, M. Quiroga, J. Zaldivar, H. H. Goodman and W. J. Rutter: Nature (London), 280, 815 (1979).

    Article  ADS  Google Scholar 

  35. P. Charnay, E. Moudart, A. Hampe, F. Fitoussi, P. Tiollais and F. Galibert: Nucleic Acids Res., 7, 335 (1979).

    Article  Google Scholar 

  36. P. Farabaugh: Nature (London), 274, 765 (1978).

    Article  ADS  Google Scholar 

  37. L. E. Post, G. D. Strycharz, M. Nomura, H. Lewis and P. P. Dennis: Proc. Natl. Acad. Sci. USA, 76, 1697 (1979).

    Article  ADS  Google Scholar 

  38. G. G. Miyada, A. H. Horwitz, L. G. Cass, J. Timko and G. Wilcoy: Nucleic Acids Res., 8, 5267 (1980).

    Article  Google Scholar 

  39. D. R. Smith and J. M. Calvo: Nucleic Acids Res., 8, 2255 (1980).

    Article  Google Scholar 

  40. R. Musso, R. Di Lauro, M. Rosenberg and B. De CrombruggheProc. Natl. Acad. Sci. USA, 74, 106 (1977).

    Article  ADS  Google Scholar 

  41. D. E. Buechel, B. Gronenborn, B. Muller and B. Hill: Nature (London), 283, 541 (1980).

    Article  ADS  Google Scholar 

  42. K. Nakamura and M. Inouye: Cell, 18, 1109 (1979).

    Article  Google Scholar 

  43. E. Beck and E. Bremer: Nucleic Acids Res., 8, 3011 (1980).

    Article  Google Scholar 

  44. A. Sanear, C. Stachelek, W. Konigsherg and W. D. Respp: Proc. Natl. Acad. Sci. USA, 77, 2611 (1980).

    Article  ADS  Google Scholar 

  45. J. Sutcliffe: Proc. Natl. Acad. Sci. USA, 75, 3737 (1979).

    Article  ADS  Google Scholar 

  46. P. N. Brian and C. Yanofsky: Proc. Natl. Acad. Sci. USA, 76, 5244 (1979).

    Article  Google Scholar 

  47. J. Zieg and M. Simon: Proc. Natl. Acad. Sci. USA, 77, 4196 (1980).

    Article  ADS  Google Scholar 

  48. K. Nakamura and H. Inouye: Proc. Natl. Acad. Sci. USA, 77, 1369 (1980).

    Article  ADS  Google Scholar 

  49. S. Horinouchi and B. Weisblum: Proc. Natl. Acad. Sci. USA, 77, 7079 (1980).

    Article  ADS  Google Scholar 

  50. T. J. Gryezau, G. Grandi, J. Hahn, R. G. Rondi and D. Dubman: Nucleic Acids Res., 8, 6081 (1980).

    Article  Google Scholar 

  51. L. A. M. Heusgens, L. A. Grivell, P. Borst and J. L. Bos: Proc. Natl. Acad. Sci. USA, 76, 1663 (1979).

    Article  ADS  Google Scholar 

  52. M. Smith, D. W. Leung, S. Gillman, C. R. Astell, D. L. Montgome and B. D. Hall: Cell, 16, 753 (1979).

    Article  Google Scholar 

  53. W. Schaffner, G. Keenz, H. Daetwyler, J. Telford, H. Smith and M. Birnstiel: Cell, 14, 655 (1978).

    Article  Google Scholar 

  54. I. Sures, J. Lowry and L. H. Kedes: Cell, 15, 1033 (1978).

    Article  Google Scholar 

  55. L. McReynolds, B. W. O'Malley, A. D. Nisbet, J. E. Fothergill, D. Givol, S. Fields, H. Robertson and G. G. Brownlee: Nature (London), 773, 723 (1978).

    Article  ADS  Google Scholar 

  56. J. Seidman, A. Leder, M. Nau, B. Norman and P. Leder: Science, 202, 11 (1978).

    Article  ADS  Google Scholar 

  57. P. H. Hamlyn, G. G. Brownlee, C. C. Cheng, M. J. Gait and C. Milstein: Cell, 15, 1067 (1978).

    Article  Google Scholar 

  58. O. Bernard, N. Hozumi and S. Tonegawa: Cell, 15, 1133 (1978).

    Article  Google Scholar 

  59. S. Tonegawa, A. M. Haxam, P. Tigard, O. Bernard and W. Gilbert: Proc. Natl. Acad. Sci. USA, 75, 1485 (1978).

    Article  ADS  Google Scholar 

  60. J. G. Seidman, E. E. Max and P. Leder: Nature (London), 280, 370 (1979).

    Article  ADS  Google Scholar 

  61. J. Rogers, P. Clarke and W. Salsh: Nucleic Acids Res., 6, 3305 (1979).

    Article  Google Scholar 

  62. D. A. Konkel, S. M. Tilghman and P. Leder: Cell, 15, 1175 (1978).

    Article  Google Scholar 

  63. J. L. Roberts, P. H. Seeburg, J. Shine, E. Herbert, S. D. Baxter and H. M. Goodman: Proc. Natl. Acad. Sci. USA, 76, 2153 (1979).

    Article  ADS  Google Scholar 

  64. P. H. Seeburg, J. Shine, J. A. Martial, J. D. Baxter and H. M. Goodman: Nature (London), 270, 486 (1977).

    Article  ADS  Google Scholar 

  65. E. J. Gubbins, R. A. Maurer, J. L. Hastley and J. E. Donelson: Nucleic Acids Res., 6, 915 (1979).

    Article  Google Scholar 

  66. A. Ullrich, J. Shine, J. Chirgwin, R. Pictet, E. Tischer, W. J. Putter and H. M. Goodman: Science, 196, 1313 (1977).

    Article  ADS  Google Scholar 

  67. H. G. Heindell, A. Liu, G. V. Paddock, G. M. Studnika and W. A. Salser: Cell, 15, 43 (1978).

    Article  Google Scholar 

  68. A. Efstratiadis, F. C. Kafatos and T. Maniatis: Cell, 10, 571 (1977).

    Article  Google Scholar 

  69. S. Nakanishi, A. Inoue, T. Kita, M. Nakamura, A. C. Y. Chang, S. N. Cohen and S. Numa: Nature (London)278, 423 (1979).

    Article  ADS  Google Scholar 

  70. J. C. Fiddes and H. M. Goodman.: Nature (London), 281, 351 (1979).

    Article  ADS  Google Scholar 

  71. C. A. Marotta, J. T. Wilson, B. G. Forget and S. M. Weissman: J. Biol. Chem., 252, 5040 (1977).

    Google Scholar 

  72. J. A. Martial, R. A. Hallewell, J. D. Baxter and H. M. Goodman: Science, 205, 602 (1979).

    Article  ADS  Google Scholar 

  73. J. Shine, P. Seeburg, J. Martial, J. Baxter and H. M. Goodman: Nature (London), 270 494 (1977).

    Article  ADS  Google Scholar 

  74. W. Feller: An Introduction to Probability Theory and Its Application, Vol. 1 (New York, N.Y., 1970).

  75. W. Feller, An Introduction to Probability Theory and Its Application, Vol. 2 (New York, N.Y., 1970).

  76. A. Cascino, M. Cipollaro, A. M. Guerrini, G. Mastrocinque, A. Spena and V. Scarlato: Nucleic Acids Res., 9, 1499 (1981).

    Article  Google Scholar 

  77. G. Modiano, G. Battistuzzi and G. Motulsky: Proc. Natl. Acad. Sci. USA, 78, 1110 (1981).

    Article  ADS  Google Scholar 

  78. G. Afeltra, M. Macchiato, C. Moscatelli, A. Tramontano and A. Cascino: Atti Assoc. Genet. Ital, 26, 1 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuomo, V., Macchiato, M. & Tramontano, A. Thermodynamic characteristics of a biological organism: Information value of a gene and of a protein as a measure of the efficiency and as an index of selective pressure. Il Nuovo Cimento D 2, 1582–1601 (1983). https://doi.org/10.1007/BF02460233

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460233

PACS

Navigation