Skip to main content
Log in

Analysis of volume regulation in an epithelial cell model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

An epithelial cell is modeled as a single compartment, bounded by apical and basolateral cell membranes, and containing two nonelectrolyte solute species, nominally NaCl and KCl. Membrane transport of these species may be metabolically driven, or it may follow the transmembrane concentration gradients, either singly (a channel) or jointly (a cotransporter). To represent the effect of stretch-activated channels or shrinkage-activated cotransporters, the membrane permeabilities and cotransport coefficients are permitted to be functions of cell volume. When this epithelium is considered as a dynamical system, conditions are indicated which guarantee the uniqueness and stability of equilibria. Experimentally, many epithelial cells can regulate their volume, and such volume regulatory capability is defined for this model. It is clearly distinct from dynamical stability of the equilibrium and requires more stringent conditions on the volume-dependent permeabilities and cotransporters. For a previously developed model of the toad urinary bladder (Strieteret al., 1990,J. gen. Physiol. 96, 319–344) the uniqueness and stability of its equilibria are indicated. The analysis also demonstrates that under some conditions a second stable equilibrium may appear, along with a saddle-node bifurcation. This is illustrated numerically in a modified model of the epithelium of the thick ascending limb of Henle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Blumenfeld, J. D., E. B. Grossman, A. M. Sun and S. C. Hebert. 1989. Sodium-coupled ion cotransport and the volume regulatory increase response.Kidney Int. 36, 434–440.

    Google Scholar 

  • Civan, M. M. and R. J. Bookman. 1982. Transepithelial Na transport and the intracellular fluids: a computer study.J. Membrane Biol. 65, 63–80.

    Article  Google Scholar 

  • Dellasega, M. and J. J. Grantham. 1973. Regulation of renal tubule cell volume in hypotonic media.Am. J. Physiol. 224, 1288–1294.

    Google Scholar 

  • Dunham, P. B. and J. F. Hoffman. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep.J. gen. Physiol. 58, 94–116.

    Article  Google Scholar 

  • Eveloff, J. L. and D. G. Warnock. 1987. Activation of ion transport systems during cell volume regulation.Am. J. Physiol. 252, F1-F10.

    Google Scholar 

  • Geck, P. and B. Pfeiffer. 1985. Na++K++2Cl cotransport in animal cells—its role in volume regulation.Ann. NY. Acad Sci. 456, 166–182.

    Google Scholar 

  • Greger, R. 1985. Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron.Physiol. Rev. 65, 760–797.

    Google Scholar 

  • Grinstein, S., A. Rothstein, B. Sarkadi and E. W. Gelfand. 1984. Responses of lymphocytes to anisotonic media: volume-regulating behavior.Am. J. Physiol. 246, C204-C215.

    Google Scholar 

  • Hebert, S. C. 1986. Hypertonic cell volume regulation in mouse thick limbs. II. Na+−H+ and Cl−HCO 3 exchange in basolateral membranes.Am. J. Physiol. 250, C920-C931.

    Google Scholar 

  • Hebert, S. C. and A. Sun. 1988. Hypotonic cell volume regulation in mouse medullary thick ascending limb: effects of ADH.Am. J. Physiol. 255, F962-F969.

    Google Scholar 

  • Jakobsson, E. 1980. Interactions of cell volume, membrane potential, and membrane transport parameters.Am. J. Physiol. 238, C196-C206.

    Google Scholar 

  • Kregenow, F. M. 1981. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media.Ann. Rev. Physiol. 43, 493–505.

    Article  Google Scholar 

  • Lew, V. L., H. G. Ferreira and T. Moura. 1979. The behaviour of transporting epithelial cells: I. Computer analysis of a basic model.Proc. R. Soc. London B. 206, 53–83.

    Article  Google Scholar 

  • Lohr, J. W. and J. J. Grantham. 1986. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media.J. Clin. Invest. 78, 1165–1172.

    Article  Google Scholar 

  • Macknight, A. D. 1988. Principles of cell volume regulation.Renal Physiol. Biochem. 11, 114–141.

    Google Scholar 

  • MacRobbie, E. A. C. and H. H. Ussing. 1961. Osmotic behavior of the epithelial cells of frog skinActa Physiol. Scand. 53, 348–365.

    Google Scholar 

  • Milgram, J. H. and A. K. Solomon. 1977. Membrane permeability equations and their solutions for red cells.J. Membrane Biol. 34, 103–144.

    Article  Google Scholar 

  • Montrose-Rafizadeh, C. and W. B. Guggino. 1990. Cell volume regulation in the nephron.Ann. Rev. Physiol. 52, 761–772.

    Article  Google Scholar 

  • Morris, C. E. 1990. Mechanosensitive ion channels.J. Membrane Biol. 113, 93–107.

    Article  Google Scholar 

  • Reuss, L. 1988. Cell volume regulation in nonrenal epithelia.Renal Physiol. Biochem. 11, 187–201.

    Google Scholar 

  • Sachs, F. 1987. Baroreceptor mechanisms at the cellular level.Fed. Proc. 46, 12–16.

    Google Scholar 

  • Sackin, H. 1990. Regulation of renal proximal tubule basolateral potassium channels.Prog. clin. Biol. Res. 334, 231–49.

    Google Scholar 

  • Siebens, A. W. 1985. Cellular volume control. InThe Kidney: Physiology and Pathophysiology, D. W. Seldin and G. Giebisch (eds), pp. 91–115. New York: Raven Press.

    Google Scholar 

  • Spring, K. R. and A. C. Ericson. 1982. Epithelial cell volume modulation and regulation.J. Membrane Biol. 69, 167–176.

    Article  Google Scholar 

  • Strieter, J., J. L. Stephenson, L. G. Palmer and A. M. Weinstein. 1990. Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium.J. gen. Physiol. 96, 319–344.

    Article  Google Scholar 

  • Tosteson, D. C. and J. F. Hoffman. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells.J. gen. Physiol. 44, 169–194.

    Article  Google Scholar 

  • Ussing, H. H. 1982. Volume regulation of frog skin epithelium.Acta Physiol. Scand. 114, 363–369.

    Article  Google Scholar 

  • Volkl, H., M. Paulmichl and F. Lang. 1988. Cell volume regulation in renal cortical cells.Renal Physiol. Biochem. 11, 158–173.

    Google Scholar 

  • Weinstein, A. M. 1987. Convective paracellular solute flux. A source of ion-ion interaction in the epithelial transport equations.J. gen. Physiol. 89, 501–518.

    Article  Google Scholar 

  • Welling, D. J. and L. W. Welling. 1988. Model of renal cell volume regulation without active transport: role of a heteroporous membrane.Am. J. Physiol. 255, F529-F538.

    Google Scholar 

  • Welling, P. A. and R. G. O’Neil. 1990. Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule.Am. J. Physiol. 258, F951-F962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, A.M. Analysis of volume regulation in an epithelial cell model. Bltn Mathcal Biology 54, 537–561 (1992). https://doi.org/10.1007/BF02459634

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459634

Keywords

Navigation