Skip to main content
Log in

Transient effects on the initial rate of oxygenation of red blood cells

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The rate-controlling process in the oxygenation of red blood cells is investigated using a Roughton-like model for oxygen diffusion and reaction with hemoglobin. The mathematical equations describing the model are solved using two independent techniques, numerical inversions of the Laplace transform of the equations and numerical solutions via an implicit-explicit finite difference form of the equations.

The model is used to re-examine previous theoretical models that incorporate either a red cell membrane that is resistive to oxygen diffusion or an unstirred layer of water surrounding the cell. Although both models have been postulated to be equivalent, the results of the computer simulations demonstrate significant differences between the two models in the rate of oxygenation of the red cells, depending upon the values chosen for the diffusion coefficient for O2 in the membrane and the thickness of the water layer. The difference is apparently due to differences in the induction and transient periods of the water layer model relative to the membrane model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Carnahan, B., H. A. Luther and J. O. Wilkes. (1969).Applied Numerical Methods, Ch. 7, New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Coin, J. T. and J. S. Olson (1979). “The Rate of Uptake by Human Red Cells.”J. Biochem.,254, 1178–1190.

    Google Scholar 

  • Einstein, A. (1956). “On the movement of small particles, suspended in a stationary liquid demanded by the molecular-kinetic theory of heat.” InInvestigations on the Theory of Brownian Movement, Ed. R. Furth, New York: Dover.

    Google Scholar 

  • Fischkoff S. and J. M. Vanderkooi. (1976). “Oxygen Diffusion in Biological and Artificial Membranes Determined by the Fluorochrome Pyrene”.J. gen. Physiol.,65, 663–676.

    Article  Google Scholar 

  • Forster, R. E. (1964). “Rate of Gas Uptake by Red Cells” InHandbook of Physiology, Eds. W. Fenn and H. Rohn, Ch. 32. Washington D.C.: American Physiological Society.

    Google Scholar 

  • Gad-el-Hak, M., J. B. Morton and H. Kutchai. (1977). “Turbulent Flow of Red Blood Cells in Dilute Suspensions”.Biophys. J.,18, 289–300.

    Article  Google Scholar 

  • Gibson, Q. H. and F. J. W. Roughton. (1958). “The Velocity of Combination of the First Oxygen Molecule with Sheep Hemoglobin”.J. Physiol., Lond.,140, 37p-38p.

    Google Scholar 

  • Jennings, J. B. (1975). “Analog Transmission Line Models for Power Systems,” Ph.D. Dissertation, Univ. Of Missouri-Columbia, Ch. 5 and Appendix C.

  • Koyama, T. and M. Mochizuki. (1969). “A Study on the Relationship Between the Oxygenation Velocity of the Red Blood Cell and the Flow Velocity in a Rapid Flow Method.”Jap. J. Physiol. 19, 534–536.

    Google Scholar 

  • Kruezer, F. and W. Z. Yahr. (1960). “Influence of the Red Cell Membrane on Diffusion of Oxygen.”J. appl. Physiol.,15, 1117–1122.

    Google Scholar 

  • Kutchai, H. (1975). “Role of the Red Cell Membrane in Oxygen Uptake.”Resp. Physiol.,23, 121–132.

    Article  Google Scholar 

  • Kutchai, H. and N. C. Staub. (1969). “Steady-State Hemoglobin-Facilitated O2 Transport in Human Erythrocytes.”J. gen. Physiol.,53, 576.

    Article  Google Scholar 

  • McDonald, G. C., J. M. Vanderkooi and J. C. Oerholtzer. (1979). “Oxygen Diffusion in Phospholipid Artificial Membranes Studied by Fourier Transform Nuclear Magnetic Resonance.”Archs Biochem. Biophys.,196, 281–283.

    Article  Google Scholar 

  • Middleman, S. (1972).Transport Phenomena in The Cardiovascular System. New York: Wiley-Interscience.

    Google Scholar 

  • Moll, W. (1966). “Diffusion Coefficient of Hemoglobin.”Resp. Physiol.,1, 357–365.

    Article  Google Scholar 

  • Moll, W. (1969). “The Influence of Hemoglobin Diffusion on Oxygen Uptake and Release by Red Cells.”Resp. Physiol.,6, 1–15.

    Article  Google Scholar 

  • Nicholson, P. and F. J. W. Roughton. (1915). “A Theoretical Study of the Influence of Diffusion and Chemical Reaction Velocity on the Rate of Exchange of Carbon Monoxide and Oxygen between the Red Blood Corpuscle and the Surrounding Fluid.”Proc. R. Soc., B,138, 247–264.

    Google Scholar 

  • Robertson, J. D. (1972). “The Structure of Biological Membranes.”Archs intern. Med.,129, 202.

    Article  Google Scholar 

  • Roughton, F. J. W. (1932). “Diffusion and Chemical Reaction Velocity as a Joint Factor in Determining the Rate of Uptake of Oxygen and Carbon Monoxide by the Red Blood Corpuscle.”Proc. R. Soc.,B,111, 1–36.

    Article  Google Scholar 

  • Roughton, F. J. W. (1959). “Diffusion and Simultaneous Chemical Reaction Velocity in Hemoglobin Solutions and Red Cell Suspensions.”Prog. Biophys. Biochem.,9, 55–104.

    Google Scholar 

  • Saul'yev, V. K. (1964).Integration of Equations of Parabolic Type by the Method of Nets. New York: MacMillan.

    MATH  Google Scholar 

  • Sendroy, J. Jr., R. T. Dillon and D. D. Van Slyke. (1934). “Studies of Gas and Electrolyte Equilibria in Blood. XIX. The Solubility and Physical State of Uncombined Oxygen in Blood.”J. biol. Chem.,105, 597–632.

    Google Scholar 

  • Sha'afi, R. I., G. T. Rich, V. W. Sidel, W. Bossert and A. K. Solomon. (1967). “The Effect of the Unstirred Layer on Human Red Cell Water Permeability.”J. gen. Physiol.,50, 1377–1399.

    Article  Google Scholar 

  • Weeks, W. T. (1966). “Numerical Inversions of Laplace Transforms Using Languerre Functions.”J. Ass. comput. Mach.,13, 419–426.

    MATH  MathSciNet  Google Scholar 

  • Widder, D. V. (1941).The Laplace Transform Princeton: Princeton University Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weingarden, M., Mizukami, H. & Rice, S.A. Transient effects on the initial rate of oxygenation of red blood cells. Bltn Mathcal Biology 44, 119–134 (1982). https://doi.org/10.1007/BF02459423

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459423

Keywords

Navigation