Skip to main content
Log in

Regulation of theSaccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The expression of theSRS2 gene, which encodes a DNA helicase involved in DNA repair inSaccharomyces cerevisiae, was studied using anSRS2-lacZ fusion integrated at the chromosomalSRS2 locus. It is shown here that this gene is expressed at a low level and is tightly regulated. It is cell-cycle regulated, with induction probably being coordinated with that of the DNA-synthesis genes, which are transcribed at the G1-S boundary. It is also induced by DNA-damaging agents, but only during the G2 phase of the cell cycle; this distinguishes it from a number of other repair genes, which are inducible throughout the cycle. During meiosis, the expression ofSRS2 rises at a time nearly coincident with commitment to recombination. Sincesrs2 null mutants are radiation sensitive essentially when treated in G1, the mitotic regulation pattern described here leads us to postulate that either secondary regulatory events limit Srs2 activity to G1 cells or Srs2 functions in a repair mechanism associated with replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboussekhra A, Chanet R, Zgaga Z, Cassier-Chauvat C, Heude M, Fabre F (1989)RADH, a gene ofSaccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics ofradH mutants and sequence of the gene. Nucleic Acids Res 17:7211–7219

    PubMed  CAS  Google Scholar 

  • Aboussekhra A, Chanet R, Adjiri A, Fabre F (1992) Semidominant suppressors ofsrs2 helicase mutations ofSaccharomyces cerevisiae map in theRAD51 gene, whose sequence predicts a protein with similarities to procaryoticrecA proteins Mol Cell Biol 12:3224–3234

    PubMed  CAS  Google Scholar 

  • Aguilera A, Klein HL (1988) Genetic control of intrachromosomal recombination inSaccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790

    PubMed  CAS  Google Scholar 

  • Bailly V, Lamb J, Sung P, Prakash S, Prakash L (1994) Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev 8:811–820

    PubMed  CAS  Google Scholar 

  • Basile G, Aker M, Mortimer RK (1992) Nucleotide sequence and transcriptional regulation of the yeast recombinational repair geneRAD51. Mol Cell Biol 12:3235–3246

    PubMed  CAS  Google Scholar 

  • Burnborg G, Williamson DH (1978) The relevance of the nuclear division cycle to radiosensitivity in yeast. Mol Gen Genet 162:277–285

    Article  Google Scholar 

  • Cole GM, Mortimer RK (1989) Failure to induce a DNA repair gene,RAD54, inSaccharomyces cerevisiae does not affect DNA repair or recombination phenotypes. Mol Cell Biol 9:3314–3322

    PubMed  CAS  Google Scholar 

  • Cole GM, Schild D, Lovett ST, Mortimer RK (1987) Regulation ofRAD54- andRAD52-lacZ gene fusions inSaccharomyces cerevisiae in response to DNA damage. Mol Cell Biol 7: 1078–1084

    PubMed  CAS  Google Scholar 

  • Cole GM, Schild D, Mortimer RK (1989) DNA repair and recombination genes inSaccharomyces cerevisiae, RAD52 andRAD54, are induced during meiosis. Mol Cell Biol 9:3101–3104

    PubMed  CAS  Google Scholar 

  • Daignan-Fornier B, Bolotin-Fukuhara M (1988) In vivo functional characterization of a yeast nucleotide sequence: construction of a mini-Mu derivative adapted to yeast. Gene 62:45–54

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann PR, Butler J, Tamai K, Dorland S, Greene JR, Thiele DJ, Stillman DJ (1992) Parallel pathways of gene regulation: homologous regulatorsSW15 andACE2 differentially control transcription ofHO and chitinase. Genes Dev 6:93–104

    PubMed  CAS  Google Scholar 

  • Elledge SJ, Davis RW (1990) Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotidereductase. Genes Dev 4: 740–751

    PubMed  CAS  Google Scholar 

  • Emery HS, Schild D, Kellog DE; Mortimer RK (1991) Sequence ofRAD54, aSaccharomyces cerevisiae gene involved in recombination and repair. Gene 104:103–106

    Article  PubMed  CAS  Google Scholar 

  • Esposito RE, Klapholz S (1981) Meiosis and ascopore development. In: Strathern J, Jones EW, Broach JR (eds) The molecular biology of the yeastSaccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 211–287

    Google Scholar 

  • Fabre F, Boulet A, Roman H (1984) Gene conversion at different points in the mitotic cycle ofSaccharomyces cerevisiae. Mol Gen Genet 195:139–143

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Siede W, Cooper AJ (1991) Cellular responses to DNA damage in yeast. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeastSaccharomyces: genome dynamics, protein synthesis, and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 147–192

    Google Scholar 

  • Game JC (1983) Radiation-sensitive mutants and repair in yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics: fundamental and applied aspects. Springer-Verlag, New York, pp 109–137

    Google Scholar 

  • Game JC, Mortimer RK (1974) A genetic study of X-ray sensitive mutants in yeast. Mutat Res 24:281–292

    Article  PubMed  CAS  Google Scholar 

  • George JW, Brosh RM, Matson SW (1994) A dominant negative allele of theEscherichia coli uvrD gene encoding DNA helicase II: a biochemical and genetic characterization. J Mol Biol 235: 424–435

    Article  PubMed  CAS  Google Scholar 

  • Haynes RH, Kunz BA (1981) DNA repair and mutagenesis. In: Strathern J, Jones EW, Broach JR (eds) The molecular biology of the yeastSaccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 371–414

    Google Scholar 

  • Heude M, Fabre F (1993) a/α-control of DNA repair in the yeastSaccharomyces cerevisiae: genetic and physiological aspects. Genetics 133:489–498

    PubMed  CAS  Google Scholar 

  • Ivanov El, Korolev VG, Fabre F (1992)XRS2, a DNA repair gene ofSaccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664

    PubMed  CAS  Google Scholar 

  • Johnson RE, Henderson ST, Petes TD, Prakash S, Bankmann M, Prakash L (1992)Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol Cell Biol 12:3807–3818

    PubMed  CAS  Google Scholar 

  • Johnson AL, Barker DG, Johnston (1986) Induction of yeast DNA ligase genes in exponential and stationary phase cultures in response to DNA damaging agents. Curr Genet 11:107–112

    Article  PubMed  CAS  Google Scholar 

  • Johnston LH (1992) Cell cycle control of gene expression in yeast. Trends Cell Biol 2:353–357

    Article  PubMed  CAS  Google Scholar 

  • Johnston LH, Lowndes NF (1992) Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Res 20:2403–2410

    PubMed  CAS  Google Scholar 

  • Johnston LH, White JHM, Johnson AL, Lucchini G, Plevani P (1987) The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res 15:5017–5030

    PubMed  CAS  Google Scholar 

  • Jones JS, Prakash L (1991) Transcript levels ofSaccharomyces cerevisiae DNA repair geneRAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle. Nucleic Acids Res 19:893–898

    PubMed  CAS  Google Scholar 

  • Jones JS, Prakash L, Prakash S (1990) Regulated expression of theSaccharomyces cerevisiae DNA repair geneRAD7 in response to DNA damage and during sporulation. Nucleic Acids Res 18: 3281–3285

    PubMed  CAS  Google Scholar 

  • Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266:15555–15558

    PubMed  CAS  Google Scholar 

  • Kilbey BJ, Brychcy T, Nasim A (1978) Initiation of UV mutagenesis inSaccharomyces cerevisiae. Nature 274:889–891

    Article  CAS  Google Scholar 

  • Lawrence CW, Christensen RB (1979) Metabolic suppressors of trimethoprim and ultraviolet light sensitivities ofSaccharomyces cerevisiae rad6 mutants. J Bacteriol 139:866–876

    PubMed  CAS  Google Scholar 

  • Madura K, Prakash S (1986) Nucleotide sequence, transcript mapping, and regulation of theRAD2 gene ofSaccharomyces cerevisiae. J Bacteriol 166:914–923

    PubMed  CAS  Google Scholar 

  • Madura K, Prakash S (1990a) Transcript levels of theSaccharomyces cerevisiae DNA repair geneRAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle. Nucleic Acids Res 18:4737–4742

    PubMed  CAS  Google Scholar 

  • Madura K, Prakash S (1990b) TheSaccharomyces cerevisiae DNA repair geneRAD2 is regulated in meiosis but not during the mitotic cycle. Mol Cell Biol 10:3256–3257

    PubMed  CAS  Google Scholar 

  • Madura K, Prakash S, Prakash L (1990) Expression of theSaccharomyces cerevisiae DNA repair geneRAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res 18:771–778

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • McIntosh EM (1993a) Expression of DNA replication genes in the yeast cell cycle. Mutat Res 289:61–72

    PubMed  CAS  Google Scholar 

  • McIntosh EM (1993b) MCB elements and the regulation of DNA replication genes in yeast. Curr Genet 24:185–192

    Article  PubMed  CAS  Google Scholar 

  • McIntosh EM, Atkinson T, Storms RK, Smith M (1991) Characterization of a short, cis-acting DNA sequence which conveys cell cycle stage-dependent transcription inSaccharomyces cerevisiae. Mol Cell Biol 11:329–337

    PubMed  CAS  Google Scholar 

  • Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K (1991) The role of phosphorylation and the CDC28 protein kinase in cell-cycle regulated nuclear import of theS. cerevisiae transcription factor SWI5. Cell 66:743–758

    Article  PubMed  CAS  Google Scholar 

  • Palladino F (1992) Genetic characterization of theHPR5 helicase gene ofSaccharomyces cerevisiae. Ph.D. Thesis, New York University, New York

    Google Scholar 

  • Palladino F, Klein HL (1992) Analysis of mitotic and meiotic defects inSaccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 132:23–37

    PubMed  CAS  Google Scholar 

  • Peterson TA, Prakash L, Prakash S, Osley MA, Reed SI (1985) Regulation ofCDC9, theSaccharomyces cerevisiae gene that encodes DNA ligase Mol Cell Biol 5:226–235

    PubMed  CAS  Google Scholar 

  • Resnick MA, Stasiewicz S, Game JC (1983) Meiotic DNA metabolism in wild-type and excision-deficient yeast following UV exposure. Genetics 104:583–601

    PubMed  CAS  Google Scholar 

  • Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    Article  PubMed  CAS  Google Scholar 

  • Robinson GW, Nicolet CM, Kalainov D, Friedberg EC (1986) A yeast excision repair gene is inducible by DNA damaging agents. Proc Natl Acac Sci USA 83:1842–1846

    Article  CAS  Google Scholar 

  • Rong L, Palladino F, Aguilera A, Klein HL (1991) The hyper-gene conversionhrp5-1 mutation ofSaccharomyces cerevisiae is an allele of theSRS2/RADH gene. Genetics 127:75–85

    PubMed  CAS  Google Scholar 

  • Rong L, Klein HL (1993) Purification and characterization of the SRS2 DNA helicase of the yeastSaccharomyces cerevisiae. J Biol Chem 268:1252–1259

    PubMed  CAS  Google Scholar 

  • Rose M, Botstein D (1983) Construction and use of gene fusions tolacZ (β-galactosidase) that are expressed in yeast. Methods Enzymol 101:167–180

    Article  PubMed  CAS  Google Scholar 

  • Saeki T, Machida I, Nakai S (1980) Genetic control of diploid recovery after γ-irradiation in the yeastSaccharomyces cerevisiae. Mutat Res 73:251–265

    PubMed  CAS  Google Scholar 

  • Schiestl RH, Prakash S, Prakash L (1990) TheSRS2 suppressor ofRad6 mutations ofSaccharomyces cerevisiae acts by channeling DNA lesions into theRAD52 DNA repair pathway. Genetics 124:817–831

    PubMed  CAS  Google Scholar 

  • Schild D, Glassner BJ, Mortimer RK, Carlson M, Laurent BC (1992) Identification ofRAD16, a yeast excision repair gene homologous to the recombinational repair geneRAD54 and to theSNF2 gene involved in transcriptional activation. Yeast 8:385–395

    Article  PubMed  CAS  Google Scholar 

  • Sebastian J, Kraus B, Sancar GB (1990) Expression of the yeastPHR1 gene is induced by DNA-damaging agents. Mol Cell Biol 10:4630–4637

    PubMed  CAS  Google Scholar 

  • Sherman F, Fink GR, Lawrence CW (1974) Methods in yeast genetics. Cold Spring Harbor Laboratory. New York

    Google Scholar 

  • Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination inS. cerevisiae is a RecA-Like protein. Cell 69:457–470

    Article  PubMed  CAS  Google Scholar 

  • Siede W, Robinson GW, Kalainov D, Malley T, Friedberg EC (1989) Regulation of theRAD2 gene ofSaccharomyces cerevisiae. Mol Microbiol 3:1697–1707

    PubMed  CAS  Google Scholar 

  • Simon JA, Lis JT (1987) A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res 15:2971–2987

    PubMed  CAS  Google Scholar 

  • Singhal RK, Hinkle DC, Lawrence C (1992) TheREV3 gene ofSaccharomyces cerevisiae is transcriptionally regulated more like a repair gene than one encoding a DNA polymerase. Mol Gen Genet 236:17–24

    PubMed  CAS  Google Scholar 

  • Washburn BK, Kushner SR (1991) Construction and analysis of deletions in the structural gene (uvrD) for DNA helicase II ofEscherichia coli. J Bacteriol 173:2569–2575

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heude, M., Chanet, R. & Fabre, F. Regulation of theSaccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation. Molec. Gen. Genet. 248, 59–68 (1995). https://doi.org/10.1007/BF02456614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456614

Key words

Navigation