Skip to main content
Log in

MCB elements and the regulation of DNA replication genes in yeast

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In eukaryotic organisms, genes involved in DNA replication are often subject to some form of cell cycle control. In the yeast Saccharomyces cerevisiae, most of the DNA replication genes that have been characterized to date are regulated at the transcriptional level during G1 to S phase transition. A cis-acting element termed the MluI cell cycle box (or MCB) conveys this pattern of regulation and is common among more than 20 genes involved in DNA synthesis and repair. Recent findings indicate that the MCB element is well conserved among fungi and may play a role in controlling entry into the cell division cycle. It is evident from studies in higher systems, however, that transcriptional regulation is not the only form of control that governs the cell-cycle-dependent expression of DNA replication genes. Moreover, it is unclear why this general pattern of regulation exists for so many of these genes in various eukaryotic systems. This review summarizes recent studies of the MCB element in yeast and briefly discusses the purpose of regulating DNA replication genes in the eukaryotic cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews BJ, Herskowitz I (1989) Cell 57:21–29

    Google Scholar 

  • Andrews BJ, Herskowitz I (1990) J Biol Chem 265: 14057–14060

    Google Scholar 

  • Andrews BJ, Moore LA (1992) Proc Natl Acad Sci USA 89: 11852–11856

    Google Scholar 

  • Breeden L, Nasmyth K (1987a) Cell 48: 389–397

    Google Scholar 

  • Breeden L, Nasmyth K (1987b) Nature 329: 651–654

    Google Scholar 

  • Cao L, Faha B, Dembski M, Tsai L, Harlow E, Dyson N (1992) Nature 355: 176–179

    Google Scholar 

  • Chu E, Voller D, Koeller DM, Drake JC, Takimoto CH, Maley GF, Maley F, Allegra CJ (1993) Proc Natl Acad Sci USA 90: 517–521

    Google Scholar 

  • Cross FR (1988) Mol Cell Biol 8: 4675–4684

    Google Scholar 

  • Dalton S (1992) EMBO J 11: 1797–1804

    Google Scholar 

  • Din S, Brill SJ, Fairman MP, Stillman B (1990) Genes Dev 4: 968–977

    Google Scholar 

  • Dirick L, Nasmyth K (1991) Cell 66: 995–1013

    Google Scholar 

  • Dirick L, Moll T, Auer H, Nasmyth K (1992) Nature 357: 508–513

    Google Scholar 

  • Elledge SJ, Davis RW (1990) Genes Dev 4: 740–751

    Google Scholar 

  • Elledge SJ, Zhou Z, Allen JB (1992) Trends Biochem Sci 17: 119–123

    Google Scholar 

  • Epstein CB, Cross FR (1982) Genes Dev 6: 1695–1706

    Google Scholar 

  • Feder JN, Guidos CJ, Kusler B, Carswell C, Lewis D, Schimke RT (1990) J Cell Biol 111: 2693–2701

    Google Scholar 

  • Freeman KB, Karns LR, Lutz KA, Smith MM (1992) Mol Cell Biol 12: 5455–5463

    Google Scholar 

  • Gordon CB, Campbell JL (1991) Proc Natl Acad Sci USA 88: 6050–6062

    Google Scholar 

  • Greenwood MT, Calmels EM, Storms RK (1986) J Bacteriol 168: 1336–1342

    Google Scholar 

  • Hadwiger JA, Wittenberg C, Richardson HE, de Barros Lopes M, Reed SI (1989) Proc Natl Acad Sci USA 86: 6255–6259

    Google Scholar 

  • Hamel PA, Gill RM, Phillips RA, Gallie BL (1992) Mol Cell Biol 12: 3431–3438

    Google Scholar 

  • Hiebert SW, Blake M, Azizkhan J, Nevins JR (1991) J Virol 65: 1874–1885

    Google Scholar 

  • Holden DW, Spanos A, Kanuga N, Banks GR (1991) Curr Gen 20: 145–150

    Google Scholar 

  • Johnson RE, Henderson ST, Petes TD, Prakash S, Bankmann M, Prakash L (1992) Mol Cell Biol 12: 3807–3818

    Google Scholar 

  • Johnston LH (1990) Curr Opinion Cell Biol 2: 274–279

    Google Scholar 

  • Johnston LH, Lowndes NF (1992) Nucleic Acids Res 20: 2403–2410

    Google Scholar 

  • Johnston LH, Johnson AL, Barker DG (1986) Exp Cell Res 165: 541–549

    Google Scholar 

  • Johnston LH, White JHM, Johnson AL, Lucchini G, Plevani P (1987) Nucleic Acids Res 15: 5017–5030

    Google Scholar 

  • Kaneda S, Nalbantoglu J, Takeishi K, Shimizu K, Gotoh O, Seno T, Ayusawa D (1990) J Biol Chem 265: 20277–20284

    Google Scholar 

  • Kauffman MG, Kelly TJ (1991) Mol Cell Biol 11: 2538–2546

    Google Scholar 

  • Kim YK, Lee AS (1992) J Biol Chem 267: 2723–2727

    Google Scholar 

  • Kouprina N, Kroll E, Bannikov V, Bliskovsky V, Gizatullin R, Kirillov A, Zakharyev V, Hieter P, Spencer F, Larionov V (1992) Mol Cell Biol 12: 5736–5747

    Google Scholar 

  • Lees E, Faha B, Dulic V, Reed SI, Harlow E (1992) Genes Dev 6: 1874–1885

    Google Scholar 

  • Lowndes NF, Johnson AL, Johnston LH (1991) Nature 350: 247–250

    Google Scholar 

  • Lowndes NF, Johnson AL, Breeden L, Johnston LH (1992a) Nature 357: 505–508

    Google Scholar 

  • Lowndes NF, McInerny CJ, Johnson AL, Fantes PA, Johnston LH (1992b) Nature 355: 449–453

    Google Scholar 

  • Marini NJ, Reed SI (1992) Genes Dev 6: 557–567

    Google Scholar 

  • McIntosh EM (1993) Mutat Res (in press)

  • McIntosh EM, Haynes RH (1986) Mol Cell Biol 8: 4616–4624

    Google Scholar 

  • McIntosh EM, Gadsden MH, Haynes RH (1986) Mol Gen Genet 204: 363–366

    Google Scholar 

  • McIntosh EM, Atkinson TA, Storms RK, Smith M (1991) Mol Cell Sol 11: 329–337

    Google Scholar 

  • McIntosh EM, Ager DD, Gadsden MH, Haynes RH (1992) Proc Natl Acad Sci USA 89: 8020–8024

    Google Scholar 

  • McKinney JD, Heintz N (1991) Trends Biochem Sci 16: 430–435

    Google Scholar 

  • Miles J, Formosa T (1992) Mol Cell Biol 12: 5724–5735

    Google Scholar 

  • Mirzayan C, Copeland CS, Snyder M (1992) J Cell Biol 116: 1319–1332

    Google Scholar 

  • Mudryj M, Hiebert SW, Nevins JR (1990) EMBO J 9: 2179–2184

    Google Scholar 

  • Nash R, Tokiawa G, Anand S, Erickson K, Futcher AB (1988) EMBO J 7: 4335–4346

    Google Scholar 

  • Nasheuer H, Moore A, Wahl AF, Wang TSF (1991) J Biol Chem 266: 7893–7903

    Google Scholar 

  • Nasmyth K, Dirick L (1991) Cell, 66: 955–1013

    Google Scholar 

  • Nasmyth K, Adolf G, Lydall D, Seddon A (1990) Cell 62: 631–647

    Google Scholar 

  • Ogas J, Andrews BJ, Herskowitz I (1991) Cell 66: 1015–1026

    Google Scholar 

  • Osley MA (1991) Annu Rev Biochem 60: 827–861

    Google Scholar 

  • Pizzagalli A, Piatti S, Derossi D, Gander I, Plevani P, Lucchini G (1992) Curr Genet 21: 183–189

    Google Scholar 

  • Poon P, Storms RK (1991) J Biol Chem 266: 16808–16812

    Google Scholar 

  • Prigent C, Lasko DD, Kodama K, Woodgett JR, Lindahl T (1992) EMBO J 11: 2925–2933

    Google Scholar 

  • Primig M, Sockananthan S, Auer H, Nasmyth K (1992) Nature 358: 593–597

    Google Scholar 

  • Pyles RB, Sawtell NM, Nevins JR (1990) EMBO J 9: 2179–2184

    Google Scholar 

  • Pyles RB, Sawtell NM, Thompson RL (1992) J Virol 66: 6706–6713

    Google Scholar 

  • Richardson HE, Wittenberg C, Cross F, Reed SI (1989) Cell 59: 1127–1133

    Google Scholar 

  • Seaton BL, Yucel J, Sunnerhagen P, Subramani S (1992) Gene 119: 83–89

    Google Scholar 

  • Sherley JL, Kelly TJ (1988) J Biol Chem 263: 8350–8358

    Google Scholar 

  • Siderova J, Breeden L (1993) Mol Cell Biol 13: 1069–1077

    Google Scholar 

  • Sikorska M, Kwast-Welfeld J, Youdale T, Richards R, Whitfield JF, Walker PR (1992) Biochem Cell Biol 70: 215–223

    Google Scholar 

  • Song JJ, Walker S, Chen E, Johnson EE, Spychala J, Gribbin T, Mitchell BS (1993) Proc Natl Acad Sci USA 90: 431–434

    Google Scholar 

  • Storms RK, Ord RW, Greenwood MT, Miradammadi B, Chu FK, Belfort M (1984) Mol Cell Biol 4: 2858–2864

    Google Scholar 

  • Struhl K (1985) Proc Natl Acad Sci USA 82: 8419–8423

    Google Scholar 

  • Sudo T, Miyazawa H, Hanoaka F, Ishii S (1992) Oncogene 7: 1999–2006

    Google Scholar 

  • Taba MRM, Muroff I, Lydall D, Tebb G, Nasmyth K (1991) Genes Dev 5: 2000–2013

    Google Scholar 

  • Traktman P (1991) Curr Top Microbiol Immunol 163: 93–123

    Google Scholar 

  • Uemura T, Morikawa K, Yanagida (1986) EMBO J 9: 2355–2361

    Google Scholar 

  • Verrna R, Patapoutian A, Gordon CB, Campbell JL (1991) Proc Natl Acad Sci USA 88: 7155–7159

    Google Scholar 

  • Verrna R, Smiley J, Andrews B, Campbell JL (1992) Proc Natl Acad Sci USA 89: 9479–9483

    Google Scholar 

  • Wagner S, Green MR (1991) Nature 352: 189–190

    Google Scholar 

  • Wahl AF, Geis AM, Spain BH, Wong SW, Korn D, Wang TSF (1988) Mol Cell Biol 8: 5016–5025

    Google Scholar 

  • Weintraub SJ, Prater CA, Dean DC (1992) Nature 358: 259–261

    Google Scholar 

  • Wente SR, Route MP, Blobel G (1992) J Cell Biol 119: 705–723

    Google Scholar 

  • White JHM, Green SR, Barker DG, Dumas LB, Johnston LH (1987) Exp Cell Res 171: 223–231

    Google Scholar 

  • White JHM, Barker DG, Nurse P, Johnston LH (1986) EMBO J 5: 1705–1709

    Google Scholar 

  • White JHM, Johnson AL, Lowndes NF, Johnston LH (1991) Nucleic Acids Res 19: 359–364

    Google Scholar 

  • Wittenberg C, Sugimoto K, Reed SI (1990) Cell 62: 225–237

    Google Scholar 

  • Yamaguchi M, Hayashi Y, Hirose F, Matsuoka S, Shiroki K, Matsukage A (1992) Jpn J Cancer Res 83: 609–617

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntosh, E.M. MCB elements and the regulation of DNA replication genes in yeast. Curr Genet 24, 185–192 (1993). https://doi.org/10.1007/BF00351790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351790

Key words

Navigation