Skip to main content
Log in

In vivo reconstitution of an active siderophore transport system by a binding protein derivative lacking a signal sequence

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Transport of iron(III) hydroxamates across the inner membrane ofEscherichia coli depends on a binding protein-dependent transport system composed of the FhuB,C and D proteins. The FhuD protein, which is synthesized as a precursor and exported through the cytoplasmic membrane, represents the periplasmic binding protein of the system, accepting as substrates a number of hydroxamate siderophores and the antibiotic albomycin. A FhuD derivative, carrying an N-terminal His-tag sequence instead of its signal sequence and therefore not exported through the inner membrane, was purified from the cytoplasm. Functional activity, comparable to that of wild-type FhuD, was demonstrated for this His-tag-FhuD in vitro by protease protection experiments in the presence of different substrates, and in vivo by reconstitution of iron transport in afhuD mutant strain. The experimental data demonstrate that the primary sequence of the portion corresponding to the mature FhuD contains all the information required for proper folding of the polypeptide chain into a functional solute-binding protein. Moreover, purification of modified periplasmic proteins from the cytosol may be a useful approach for recovery of many polypeptides which are normally exported across the inner membrane and can cause toxicity problems when overproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Actis LA, Tolmasky ME, Farell DH, Crosa JH (1988) Genetic and molecular characterization of essential components of theVibrio anguillarum plasmid-mediated iron-transport system. J Biol Chem 263:2853–2860

    PubMed  CAS  Google Scholar 

  • Adams MD, Oxender DL (1989) Bacterial periplasmic binding protein tertiary structures. J Biol Chem 264:15739–15742

    PubMed  CAS  Google Scholar 

  • Ames GF-L (1986) Bacterial periplasmic transport systems: structure, mechanism and evolution. Annu Rev Biochem 55:397–425

    Article  PubMed  CAS  Google Scholar 

  • Ames GF-L, Joshi AK (1990) Energy coupling in bacterial periplasmic permeases. J Bacteriol 172:4133–4137

    PubMed  CAS  Google Scholar 

  • Ames GF-L, Mimura CS, Shyamala V (1990) Bacterial permeases belong to a family of transport proteins operating fromEscherichia coli to human: traffic ATPases. FEMS Microbiol Rev, 75:429–446

    Article  CAS  Google Scholar 

  • Baichwal V, Liu D, Ames GF-L (1993) The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface. Proc Natl Acad Sci USA 90:620–624

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formationin vivo. Cell 67:581–589

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, Lee J-O, Jander G, Martin N, Beckwith J (1993) A pathway for disulfide bond formationin vivo. Proc Natl Acad Sci USA 90:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Berger EA, Heppel LA (1974) Different mechanisms of energy coupling for shock sensitive and shock resistant amino acid permeases ofEscherichia coli. J Biol Chem 249:7747–7755

    PubMed  CAS  Google Scholar 

  • Bieker-Brady K, Silhavy TJ (1992) Suppressor analysis suggests a multistep, cyclic mechanism for protein secretion inEscherichia coli. EMBO J 11:3165–3174

    PubMed  CAS  Google Scholar 

  • Bishop L, Agbayani RJ, Ambudkar SV, Maloney PC, Ames GF-L (1989) Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Proc Natl Acad Sci USA 86:6953–6957

    Article  PubMed  CAS  Google Scholar 

  • Brass JM (1986) Calcium-induced permeabilization of the outer membrane: a method for reconstitution of periplasmic binding protein-dependent transport systems inEscherichia coli andSalmonella typhimurium. Methods Enzymol 125:289–302

    PubMed  CAS  Google Scholar 

  • Braun V, Hantke K (1990) Genetics of bacterial iron transport. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, pp 107–138

    Google Scholar 

  • Burkhardt R, Braun V (1987) Nucleotide sequence offhuC andfhuD genes involved in iron (III)-hydroxamate transport: domains in FhuC homologous to ATP-binding proteins. Mol Gen Genet 209:49–55

    Article  PubMed  CAS  Google Scholar 

  • Coulton JW, Mason P, Allatt DD (1987)fhuC andfhuD genes for iron(III)-ferrichrome transport intoEscherichia coli K-12. J Bacteriol 169:3844–3849

    PubMed  CAS  Google Scholar 

  • Davidson AL, Nikaido H (1990) Overproduction, solubilization, and reconstitution of the maltose transport system fromEscherichia coli. J Biol Chem 265:4254–4260

    PubMed  CAS  Google Scholar 

  • Davidson AL, Nikaido H (1991) Purification and characterization of the membrane-associated components of the maltose transport system fromEscherichia coli. J Biol Chem 266:8946–8951

    PubMed  CAS  Google Scholar 

  • Davidson AL, Shuman HA, Nikaido H (1992) Mechanism of maltose transport inEscherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci USA 89:2360–2364

    Article  PubMed  CAS  Google Scholar 

  • Dean DA, Davidson AL, Nikaido H (1989) Maltose transport in membrane vesicles ofEscherichia coli is linked to ATP hydrolysis. Proc Natl Acad Sci USA 86:914–918

    Article  Google Scholar 

  • Doige CA, Ames GF-L (1993) ATP dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol 47:291–319

    Article  PubMed  CAS  Google Scholar 

  • Eick-Helmerich K, Braun V (1989) Import of biopolymers intoEscherichia coli: nucleotide sequences of theexbB andexbD genes are homologous to those of thetolQ andtolR genes, respectively. J Bacteriol 171:5117–5126

    PubMed  CAS  Google Scholar 

  • Elkins MF, Earhart CF (1989) Nucleotide sequence and regulation of theEscherichia coli gene for ferrienterobactin transport protein FepB. J Bacteriol 711:5443–5451

    Google Scholar 

  • Fecker L, Braun V (1983) Cloning and expression of thefhu genes involved in iron (III) hydroxamate uptake byE. coli. J Bacteriol 156:1301–1314

    PubMed  CAS  Google Scholar 

  • Fischer E, Günter K, Braun V (1989) Involvement of ExbB and TonB in transport across the outer membrane ofEscherichia coli: phenotypic complementation ofexbB mutants by overexpressedtonB and physical stabilization of TonB by ExbB. J Bacteriol 171:5127–5134

    PubMed  CAS  Google Scholar 

  • Friedrich MJ, De Veaux LC, Kadner RJ (1986) Nucleotide sequence of thebtuCED genes involved in vitamin B12 transport inEscherichia coli and homology with components of periplasmic binding protein-dependent transport systems. J Bacteriol. 167:928–934

    PubMed  CAS  Google Scholar 

  • Furlong CE (1986) Binding protein-dependent active transport inEscherichia coli andSalmonella typhimurium. Methods Enzymol 125:279–289

    Article  PubMed  CAS  Google Scholar 

  • Furlong CE (1987) Osmotic-shock-sensitive transport systems. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington DC, pp 768–796

    Google Scholar 

  • Gilson E, Alloing G, Schmidt T, Claverys J-P, Dudler R, Hofnung M (1988) Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and inMycoplasma. EMBO J 7:3971–3974

    PubMed  CAS  Google Scholar 

  • Gilliland GL, Quiocho FA (1981) Structure of thel-arabinosebinding protein fromEscherichia coli at 2.4 Å resolution. J Mol Biol 146:341–362

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Braun V (1976) Nature of the energy requirement for the irreversible adsorption of bacteriophage T1 and Φ 80 toEscherichia coli. J Bacteriol 125:409–415

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR, Gallagher MP (1990) Binding protein-dependent transport systems. J Bioenerg Biomembr 22:571–592

    Article  PubMed  CAS  Google Scholar 

  • Hor LI, Shuman HA (1993) Genetic analysis of periplasmic binding protein dependent transport inEscherichia coli: each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. J Mol Biol 233:659–670

    Article  PubMed  CAS  Google Scholar 

  • Kamitani S, Akiyama Y, Ito K (1992) Identification and characterization of anEscherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J 11:57–62

    PubMed  CAS  Google Scholar 

  • Kerppola RE, Shyamala VK, Klebba P, Ames GF-L (1991) The membrane-bound proteins of periplasmic permeases form a complex-identification of the histidine permease HisQMP complex. J Biol Chem 266:9857–9865

    PubMed  CAS  Google Scholar 

  • Köster W (1991) Iron (III) hydroxamate transport across the cytoplasmic membrane ofEscherichia coli. Biol Metals 4:23–32

    Article  Google Scholar 

  • Köster W, Böhm B (1992) Point mutations in 2 conserved glycine residues within the integral membrane protein FhuB affect iron (III) hydroxamate transport. Mol Gen Genet 232:399–407

    Article  PubMed  Google Scholar 

  • Köster W, Braun V (1986) Iron hydroxamate transport ofEscherichia coli: nucleotide sequence of thefhuB gene and identification of the protein. Mol Gen Genet 204:435–442

    Article  PubMed  Google Scholar 

  • Köster W, Braun V (1989) Iron hydroxamate transport intoEscherichia coli K12: localization of FhuD in the periplasm and of FhuB in the cytoplasmic membrane. Mol Gen Genet 217:435–442

    Google Scholar 

  • Köster W, Braun V (1990a) Iron (III) hydroxamate transport ofEscherichia coli: restoration of iron supply by coexpression of the N- and C-terminal halves of the cytoplasmic membrane protein FhuB cloned on separate plasmids. Mol Gen Genet 223:379–384

    Article  PubMed  Google Scholar 

  • Köster W, Braun V (1990b) Iron (III) hydroxamate transport intoEscherichia coli. Substrate binding to the periplasmic binding protein. J Biol Chem 266:21407–21410

    Google Scholar 

  • Köster WL, Actis LA, Waldbeser LS, Tolmasky ME, Crosa JH (1991) Molecular characterization of the iron transport system mediated by the pJM1-plasmid inVibrio anguillarum 775. J Biol Chem 266:23829–23833

    PubMed  Google Scholar 

  • Lugtenberg B, Meijers J, Peters E, van der Hoeck P, van Alphen L (1975) Electrophoretic resolution of the major outer membrane protein ofEscherichia coli K-12 into four bands. FEBS Lett 58:254–258

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Mann BJ, Holroyd CD, Bradbeer C, Kadner RJ (1986) Reduced activity of TonB-dependent functions in strains ofEscherichia coli. FEMS Microbiol Lett 33:255–260

    Article  CAS  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    PubMed  CAS  Google Scholar 

  • Matsuyama S-I, Fujita Y, Mizushima S (1993) SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane ofEscherichia coli. EMBO J 12:265–270

    PubMed  CAS  Google Scholar 

  • Mimmack ML, Gallagher MP, Pearce SR, Hyde SC, Booth IR, Higgins CF (1989) Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo. Proc Natl Acad Sci USA 86:8257–8260

    Article  PubMed  CAS  Google Scholar 

  • Missiakas D, Georgopoulos C, Raina S (1993) Identification and characterization of theEscherichia coli genedsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci USA 90:7084–7088

    Article  PubMed  CAS  Google Scholar 

  • Mowbray SL, Smith RD, Cole LB (1990) Structure of the periplasmic glucose/galactose receptor ofSalmonella typhimurium. Receptor 1:41–53

    PubMed  CAS  Google Scholar 

  • Newcomer ME, Gilliland GL, Quiocho FA (1981a)l-Arabinose-binding protein-sugar complex at 2.4 Å resolution. J Biol Chem 256:13213–13217

    PubMed  CAS  Google Scholar 

  • Newcomer ME, Lewis BA, Quiocho FA (1981b) The radius of gyration ofl-arabinose-binding protein decreases upon binding of ligand. J Biol Chem 256:13218–13222

    PubMed  CAS  Google Scholar 

  • Nikaido H, Saier Jr MH (1992) Transport proteins in bacteria: common themes in their design. Science 258:936–942

    PubMed  CAS  Google Scholar 

  • Oh B-H, Pandit J, Kang C-H, Nikaido K, Gokcen S, Ames GF-L, Kim S-H (1993) Three dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem 268:11348–11355

    PubMed  CAS  Google Scholar 

  • Olah GA, Trakhanov S, Trewhella J, Quiocho FA (1993) Leucine/isoleucine/valine-binding protein contracts upon binding of ligand. J Biol Chem 268:16241–16247

    PubMed  CAS  Google Scholar 

  • Prossnitz E, Gee A, Ames GF-L (1989) Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex. J Biol Chem 264:5006–5014

    PubMed  CAS  Google Scholar 

  • quiocho FA (1990) Atomic structures of periplasmic binding proteins and the high affinity active transport systems in bacteria. Phil Trans R Soc Lond [B] 326:341–351

    CAS  Google Scholar 

  • Saurin W, Martineau FP, Charbit A, Dassa E, Duplay P, Gilson E, Molla A, Ronco G, Szmeleman S, Hofnung M (1989) Periplasmic binding protein dependent transport system for maltose and maltodextrins: some recent studies. FEMS Microbiol Rev 63:53–60

    Article  CAS  Google Scholar 

  • Schneider R, Hantke K (1993) Iron-hydroxamate uptake systems inBacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol Microbiol 8:111–121

    PubMed  CAS  Google Scholar 

  • Schultz-Hauser G, Köster W, Schwarz H, Braun V (1992a) Iron (III) hydroxamate transport inEscherichia coli K-12: FhuB-mediated membrane association of the FhuC protein and negative complementation offhuC mutants. J Bacteriol 174:2305–2311

    PubMed  CAS  Google Scholar 

  • Schultz-Hauser G, Van Hove B, Braun V (1992b) 8-Azido-ATP labelling of the FecE protein of theEscherichia coli iron citrate transport system. FEMS Microbiol Lett 95:231–234

    Article  CAS  Google Scholar 

  • Sharff AJ, Rodseth LE, Quiocho FA (1993) Reffned 1.8 Å structure reveals the mode of binding of β-cyclodextrin to the maltodextrin binding protein. Biochemistry 32:10553–10559

    Article  PubMed  CAS  Google Scholar 

  • Spurlino JC, Lu G-Y, Quiocho FA (1991) The 2.3 Å resolution structure of the maltose-or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem 266:5202–5219

    PubMed  CAS  Google Scholar 

  • Staudenmaier H, Van Hove B, Yaraghi Z, Braun V (1989) Nucleotide sequences of thefecBCDE genes and locations of the proteins suggest a periplasmic binding protein-dependent transport mechanism for Iron(III) dicitrate inEscherichia coli. J Bacteriol 171:2626–2633

    PubMed  CAS  Google Scholar 

  • Stojiljkovic I, Hantke K (1994) Transport of hemin across the cytoplasmic membrane through a hemin specific periplasmic binding protein-dependent transport system inYersinia enterocolitical. Mol Microbiol 13:719–732

    PubMed  CAS  Google Scholar 

  • Studier FW, Moffat BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  • Tabor S, Richardson V (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Tam R, Saier Jr MH (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346

    PubMed  CAS  Google Scholar 

  • Thome BM, Müller M (1991) Skp is a periplasmicEscherichia coli protein requiring SecA and SecY for transport. Mol Microbiol 5:2815–2821

    PubMed  CAS  Google Scholar 

  • Treptow NA, Shuman HA (1988) Allele specificmalE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. J Mol Biol 202:809–822

    Article  PubMed  CAS  Google Scholar 

  • Wülfing C, Plückthun A (1994) Protein folding in the periplasm ofEscherichia coli. Mol Microbiol 12:685–692

    PubMed  Google Scholar 

  • Vyas NK, Vyas MN, Quiocho FA (1991) Comparison of the periplasmic receptors forl-arabinose,d-glucose/d-galactose andd-ribose. Structural and functional similarity. J Biol Chem 266:5226–5237

    PubMed  CAS  Google Scholar 

  • Zou J-Y, Flocco MM, Mowbray SL (1993) The 1.7 Å refined X-ray structure of the periplasmic glucose/galactose receptor fromSalmonella typhimurium. J Mol Biol 233:739–752

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohrbach, M.R., Paul, S. & Köster, W. In vivo reconstitution of an active siderophore transport system by a binding protein derivative lacking a signal sequence. Molec. Gen. Genet. 248, 33–42 (1995). https://doi.org/10.1007/BF02456611

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456611

Key words

Navigation