Skip to main content
Log in

Binding protein-dependent transport systems

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Bacterial binding protein-dependent transport systems are the best characterized members of a superfamily of transporters which are structurally, functionally, and evolutionary related to each other. These transporters are not only found in bacteria but also in yeasts, plants, and animals including man, and include both import and export systems. Although any single system is relatively specific, different systems handle very different substrates which can be inorganic ions, amino acids, sugars, large polysaccharides, or even proteins. Some are of considerable medical importance, including Mdr, the protein responsible for multidrug resistance in human tumors, and the product of the cystic fibrosis locus. In this article we review the current state of knowledge on the structure and function of the protein components of these transporters, the mechanism by which transport is mediated, and the role of ATP in the transport process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. D., and Oxender, D. L. (1989).J. Biol. Chem. 264, 15739–15742.

    Google Scholar 

  • Albright, L. M., Ronson, C. W., Nixon, B. T., and Ausubel, F. M. (1989).J. Bacteriol 171, 1932–1941.

    Google Scholar 

  • Alloing, G., Trombe, M-C., and Claverys, J-P. (1990).Mol. Microbiol. 4, 633–644.

    Google Scholar 

  • Ames, G. F-L. (1985).Curr. Top. Membr. Transport 23, 103–119.

    Google Scholar 

  • Ames, G. F-L. (1986).Ann. Rev. Biochem. 55, 397–425.

    Google Scholar 

  • Ames, G. F-L. (1987).Cell 47, 323–324.

    Google Scholar 

  • Ames, G. F-L., and Nikaido, K. (1981).Eur. J. Biochem. 115, 525–531.

    Google Scholar 

  • Ames, G. F-L., and Spudich, E. N. (1976).Proc. Natl. Acad. Sci. USA 73, 1877–1881.

    Google Scholar 

  • Ames, G. F-L., Nikaido, K., Groarke, J., and Petithory, J. (1989).J. Biol. Chem. 264, 3998–4002.

    Google Scholar 

  • Argos, P., Mahoney, W. C., Hermodson, M. A., and Hanei, M. (1981).J. Biol. Chem. 256, 4357–4361.

    Google Scholar 

  • Azzaria, M., Schurr, E., and Gros, P. (1989).Mol. Cell. Biol. 9, 5289–5297.

    Google Scholar 

  • Bell, A. W., Buckel, S. D., Groarke, J. M., Hope, J. N., Kingsley, D. H., and Hermodson, M. A. (1986).J. Biol. Chem. 261, 7652–7658.

    Google Scholar 

  • Berger, E. A. (1973).Proc. Natl. Acad. Sci. USA 70, 1514–1518.

    Google Scholar 

  • Berger, E. A., and Heppel, L. A. (1974).J. Biol. Chem. 249, 7747–7755.

    Google Scholar 

  • Bishop, L., Agbayani, R., Ambudkar, S. V., Maloney, P. C., and Ames, G. F-L. (1989).Proc. Natl. Acad. Sci. USA 86, 6953–6957.

    Google Scholar 

  • Blight, M. A., and Holland, I. B. (1990).Mol Microbiol. 4, in press.

  • Boyd, D., Manoil, C., and Beckwith, J. (1987).Proc. Natl. Acad. Sci. USA 84, 8525–8529.

    Google Scholar 

  • Brass, J. M., Higgins, C. F., Foley, M., Rugman, P. A., Birmingham, J., and Garland, P. B. (1986).J. Bacteriol. 165, 787–794.

    Google Scholar 

  • Buckel, S. D., Bell, A. W., Rao, J. K. M., and Hermodson, M. A. (1986).J. Biol. Chem. 261, 7659–7662.

    Google Scholar 

  • Cangelosi, G. A., Martinetti, G., Leigh, J. A., Lee, C. C., Theines, C., and Nester, E. W. (1989).J. Bacteriol. 171, 1609–1615.

    Google Scholar 

  • Chen, C., Misra, T., Silver, S., and Rosen, B. P. (1986a).J. Biol. Chem. 261, 15030–15038.

    Google Scholar 

  • Chen, C-J., Chin, J. E., Ueda, K., Clark, D. P., Pastan, I., Gottesman, M. M., and Roninson, I. B. (1986b).Cell 47, 381–389.

    Google Scholar 

  • Coulton, J. W., Mason, P., and Allatt, D. D. (1987).J. Bacteriol. 169, 3844–3849.

    Google Scholar 

  • Darawalla, K. R., Paxton, T., and Henderson, P. J. F. (1981).Biochem. J. 200, 611–627.

    Google Scholar 

  • Dassa, E., and Hofnung, M. (1985).EMBO J. 4, 2287–2293.

    Google Scholar 

  • Dean, D. A., Fikes, J. D., Gehring, K., Bassford, P. J., and Nikaido, H. (1989).J. Bacteriol. 171, 503–510.

    Google Scholar 

  • Doolittle, R. F., Johnson, M. S., Hussain, I., van Houton, B., Thomas, D. C., and Sancar, A. (1986).Nature 323, 451–453.

    Google Scholar 

  • Dreesen, T. D., Johnson, D. H., and Henikoff, S. (1988).Mol. Cell. Biol. 8, 5206–5215.

    Google Scholar 

  • Driessen, A. J. M., Kodde, J., De Jong, S., and Konings, W. N. (1987).J. Bacteriol. 169, 2748–2754.

    Google Scholar 

  • Dudler, R., Schmidhauser, C., Parish, R. W., Wettenhall, R. E. H., and Schmidt, T. (1988).EMBO J. 7, 3963–3970.

    Google Scholar 

  • Endicott, J. A., and Ling, V. (1989).Annu. Rev. Biochem. 58, 137–171.

    Google Scholar 

  • Evans, I. J., and Downie, J. A. (1986).Gene 43, 95–101.

    Google Scholar 

  • Felmlee, T., Pellett, S., and Welch, R. A. (1985).J. Bacteriol. 163, 94–105.

    Google Scholar 

  • Ferenci, T., Boos, W., Schwartz, M., and Szmelcman, S. (1977).Eur. J. Biochem. 75, 187–193.

    Google Scholar 

  • Foley, M., Brass, J. M., Birmingham, J., Cook, W. R., Garland, P. B., Higgins, C. F., and Rothfield, L. E. (1989).Mol. Microbiol. 3, 1329–1336.

    Google Scholar 

  • Foote, S. J., Thompson, J. K., Conman, A. F., and Kemp, D. J. (1989).Cell 57, 921–930.

    Google Scholar 

  • Friederich, M. J., de Veaux, L. C., and Kadner, R. J. (1986).J. Bacteriol. 167, 928–934.

    Google Scholar 

  • Froshauer, S., and Beckwith, J. (1984).J. Biol. Chem. 259, 10896–10903.

    Google Scholar 

  • Furlong, C. E. (1987). InEscherichia coli and Salmonella typhimurium (Neidhart, F. C., ed.), ASM Press, Washington, pp. 768–796.

    Google Scholar 

  • Gallagher, M. P., Pearce, S. R., and Higgins, C. F. (1989).Eur. J. Biochem. 180, 133–141.

    Google Scholar 

  • Gerlach, J. H., Endicott, J. A., Juranka, P. F., Henderson, G., Sarangi, F., Deuchars, K. L., and Ling, V. (1986).Nature (London)324, 425–489.

    Google Scholar 

  • Gill, D. R., Hatfull, G. F., and Salmond, G. P. C. (1986).Mol. Gen. Genet. 205, 134–145.

    Google Scholar 

  • Gilson, E., Nikaido, H., and Hofnung, M. (1982).Nucleic Acids Res. 10, 7449–7458.

    Google Scholar 

  • Gilson, E., Alloing, G., Schmidt, T., Claverys, J-P., Dudler, R., and Hofnung, M. (1988).EMBO J. 7, 3971–394.

    Google Scholar 

  • Glaser, D. J. (1988).EMBO J. 7, 3997–4004.

    Google Scholar 

  • Goodell, E. W., and Higgins, C. F. (1987).J. Bacteriol. 169, 3861–3865.

    Google Scholar 

  • Gowrishankar, J. (1989).J. Bacteriol. 171, 1923–1931.

    Google Scholar 

  • Gros, P., Croop, J., and Housman, D. (1986).Cell 47, 371–380.

    Google Scholar 

  • Guyer, C. A., Morgan, D. G., and Staros, J. V. (1986).J. Bacteriol. 168, 775–779.

    Google Scholar 

  • Hasmada, H. and Tsuruo, T. (1988).J. Biol. Chem. 263, 1454–1458.

    Google Scholar 

  • Hengge, R. and Boos, W. (1983).Biochim. Biophys. Acta 737, 443–478.

    Google Scholar 

  • Higgins, C. F. (1989).Nature (London)340, 342.

    Google Scholar 

  • Higgins, C. F. (1990a).Nature (London)341, 103.

    Google Scholar 

  • Higgins, C. F. (1990b).Res. Microbiol., in press.

  • Higgins, C. F., and Ames, G. F-L. (1981).Proc. Natl. Acad. Sci. USA 78, 6038–6042.

    Google Scholar 

  • Higgins, C. F., Haag, P. D., Nikaido, K., Ardeshir, F., Garcia, G., and Ames, G. F-L. (1982).Nature (London)298, 723–727.

    Google Scholar 

  • Higgins, C. F., Hiles, I. D., Whalley, K., and Jamieson, D. J. (1985).EMBO J. 4, 1033–1040.

    Google Scholar 

  • Higgins, C. F., Hiles, I. D., Salmond, G. P. C., Gill, D. R., Downie, J. A., Evans, I. J., Holland, I. B., Gray, L., Buckel, S. D., Bell, A. W., and Hermodson, M. A. (1986).Nature (London)323, 448–450.

    Google Scholar 

  • Higgins, C. F., Gallagher, M. P., Mimmack, M. L., and Pearce, S. R. (1988).Bio Essays 8, 111–116.

    Google Scholar 

  • Higgins, C. F., Gallagher, M. P., Hyde, S. C., Mimmack, M. L., and Pearce, S. R. (1990).Philos. Trans. R. Soc. London B. 326 353–365.

    Google Scholar 

  • Hiles, I. D., and Higgins, C. F. (1986).Eur. J. Biochem. 158, 561–567.

    Google Scholar 

  • Hiles, I. D., Gallagher, M. P., Jamieson, D. J., and Higgins, C. F. (1987).J. Mol. Biol. 195, 125–142.

    Google Scholar 

  • Hobot, J. A., Carleman, E., Villiger, W., and Kellenberger, E. (1984).J. Bacteriol. 160, 143–152.

    Google Scholar 

  • Hobson, A. C., Weatherwax, R., and Ames, G. F-L. (1984).Proc. Natl. Acad. Sci. USA 81, 7333–7337.

    Google Scholar 

  • Hong, J-S., Hunt, A. G., Masters, P. S., and Lieberman, J. A., 1979).Proc. Natl. Acad. Sci. USA 76, 1213–1217.

    Google Scholar 

  • Horio, M., Gottesman, M. M., and Pastan, I. (1988).Proc. Natl. Acad. USA 85, 3580–3584.

    Google Scholar 

  • Hoshino, T., and Kose, K. (1989).J. Bacteriol. 171, 6300–6306.

    Google Scholar 

  • Hunt, A. G., and Hong, J-S. (1983).Biochemistry 22, 844–850.

    Google Scholar 

  • Husain, I., Houten, B. V., Thomas, D. C., and Sandcar, A. (1986).J. Biol. Chem. 261, 4895–4901.

    Google Scholar 

  • Hyde, S. C., Elmsley, P., Hartshorn, M., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Hubbard, R., and Higgins, C. F. (1990).Nature (London), submitted.

  • Johann, S., and Hinton, S. M. (1987).J. Bacteriol. 169, 1911–1916.

    Google Scholar 

  • Joshi, A. K., Ahmed, S., and Ames, G. F.-L. (1989).J. Biol. Chem. 264, 2126–2133.

    Google Scholar 

  • Kashket, E. (1982).Biochemistry 21, 5534–5538.

    Google Scholar 

  • Kossman, M., Wolff, C., and Manson, M. D. (1988).J. Bacteriol. 170, 4516–4521.

    Google Scholar 

  • Kroll, J. S., Hopkins, I., and Moxon, E. R. (1988).Cell 53, 347–356.

    Google Scholar 

  • Kuchler, K., Sterne, R. E., and Thorner, J. (1989).EMBO J. 8, 3973–3984.

    Google Scholar 

  • Landick, R., and Oxender, D. L. (1985).J. Biol. Chem. 260, 8257.-8261.

    Google Scholar 

  • Lieberman, M. A., and Hong, J-S. (1976).Arch Biochem. Biophys. 172, 312–315.

    Google Scholar 

  • Maloney, P. C. (1990).Res. Microbiol, in press.

  • Mao, B., Pear, M. R., McCammon, J. A., and Quiocho, F. A. (1982).J. Biol. Chem. 257, 1131–1133.

    Google Scholar 

  • McGrath, J. P., and Varshavsky, A. (1989).Nature (London)340, 400–404.

    Google Scholar 

  • Miller, D. M., Olson, J. S., Pflugrath, J. W., and Quiocho, F. A. (1983).J. Biol. Chem. 258, 13665–13672.

    Google Scholar 

  • Mimmack, M. L., Gallagher, M. P., Hyde, S. C., Pearce, S. R., Booth, I. R., and Higgins, C. F. (1989).Proc. Natl. Acad. Sci. USA 86, 8257–8261.

    Google Scholar 

  • Mowbray, S. L., and Petsko, G. A. (1983).J. Biol. Chem. 258, 7991–7997.

    Google Scholar 

  • Muir, M., Williams, C., and Ferenci, T. (1985).J. Bacteriol. 163, 1237–1242.

    Google Scholar 

  • Muller-Hill, B. (1983).Nature (London)302 163–164.

    Google Scholar 

  • O'Hare, K., Murphy, C., Levis, R., and Rubin, G. M. (1984).J. Mol. Biol. 180, 437–455.

    Google Scholar 

  • Ohyama, K., Fukuzana, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozerki, H. (1986).Nature (London)322, 572–574.

    Google Scholar 

  • Overduin, P. Boos, W., and Tommassen, J. (1988).Mol. Microbiol. 2, 767–775.

    Google Scholar 

  • Payne, G., Spudich, E. N., and Ames, G. F.-L. (1985).Mol. Gen. Genet. 200, 493–496.

    Google Scholar 

  • Pflugrath, J. W., and Quiocho, F. A. (1988).J. Mol. Biol. 200, 163–180.

    Google Scholar 

  • Plate, C. A. (1979).J. Bacteriol. 137, 221–225.

    Google Scholar 

  • Plate, C. A., Suit, J. L., Jettern, A. M., and Luria, S. E. (1974).J. Biol. Chem. 249, 6138–6143.

    Google Scholar 

  • Poolman, B., Hellingwerf, K. J., and Konnings, W. N. (1987).J. Bacteriol. 169, 2272–2276.

    Google Scholar 

  • Prossnitz, E., Nikaido, K., Ulrich, S., and Ames, G. F.-L. (1988).J. Biol. Chem. 324, 17917–17920.

    Google Scholar 

  • Prossnitz, E., Gee, A., and Ames, G. F.-L. (1989).J. Biol. Chem. 264, 5006–5014.

    Google Scholar 

  • Quiocho, F. A. (1986).Annu. Rev. Biochem. 55, 287–316.

    Google Scholar 

  • Quiocho, F. A. (1990).Philos. Trans. R. Soc. Landon. B,326, 341–351.

    Google Scholar 

  • Rasched, J., Schuman, H., and Boos, W. (1976).Eur. J. Biochem. 69, 545–550.

    Google Scholar 

  • Reidl, J., Romisch, K., Ehrmann, M., and Boos, W. (1989).J. Bacteriol 171, 4888–4899.

    Google Scholar 

  • Reyes, M., Treptow, N. A., Schuman, H. A. (1986).J. Bacteriol. 165, 918–822.

    Google Scholar 

  • Richarme, G. (1982).Biochem. Biophys. Res. Commun. 105, 476–481.

    Google Scholar 

  • Richarme, G. (1985).J. Bacteriol. 162, 286–293.

    Google Scholar 

  • Richarme, G., and Heine, H-G. (1986).Eur. J. Biochem. 156, 399–405.

    Google Scholar 

  • Riordan, J. R.,et al. (1989).Science 245, 1066–1073.

    Google Scholar 

  • Ross, J. I., Eady, A., Cove, J. H., Cunliffe, W. J., Baumberg, S., and Wootton, J. C. (1990).Mol. Microbiol., in press.

  • Rossman, M. G. (1975). InThe Enzymes (Boyer, P. D., ed.), Academic Press, New York, pp. 61–79.

    Google Scholar 

  • Sack, J. S., Saper, M. A., and Quicho, F. A. (1989).J. Mol. Biol. 206, 171–191.

    Google Scholar 

  • Schwarz, M., Summers, C., Heptinstall, C., Newton, C., Markham, A., Cain, R., and Super, M. (1990).Lancet, (in press).

  • Scripture, J. B., Voelker, C., Miller, S., O'Donnell, R. T., Polgar, L., Rade, J., Horazdovsky, B. F., and Hogg, R. W. (1987).J. Mol. Biol. 197, 37–64.

    Google Scholar 

  • Seeberg, E., and Steinum, A.-L. (1982).Proc. Natl. Acad. Sci. USA 79, 988–992.

    Google Scholar 

  • Schuman, H. A. (1982a).J. Biol. Chem. 257, 5455–5461.

    Google Scholar 

  • Schuman, H. A. (1982b).Ann. Microbiol. (Inst. Pasteur) 133A, 153–159.

    Google Scholar 

  • Schuman, H. A., and Silhavy, T. J. (1981).J. Biol. Chem. 256, 560–562.

    Google Scholar 

  • Singh, A. P., and Bragg, P. D. (1979).Can. J. Biochem. 57, 1376–1383.

    Google Scholar 

  • Stanfield, S. W., Ielpi, L., O'Brochta, D., Helinski, D. R., and Ditta, G. S. (1988).J. Bacteriol. 170, 3523–3530.

    Google Scholar 

  • Staudenmaier, H., van Hove, B., Yaraghi, Z., and Braun, V. (1989).J. Bacteriol. 171, 2626–2633.

    Google Scholar 

  • Stirling, D. A., Hulton, C. S. J., Waddell, L., Park, S. F., Stewart, G. S. A. B., Booth, I. R., and Higgins, C. F. (1989).Mol. Microbiol. 3, 1025–1038.

    Google Scholar 

  • Strathdee, C. A., and Lo, R. Y. C. (1989).J. Bacteriol. 171, 916–828.

    Google Scholar 

  • Surin, B. P., Rosenberg, H., and Cox, G. B. (1985).J. Bacteriol. 161, 189–198.

    Google Scholar 

  • Tolley, S. P., Derewenda, Z., Hyde, S. C., Higgins, C. F., and Wilkinson, A. J. (1988).J. Mol. Biol. 204, 493–494.

    Google Scholar 

  • Treptow, N. A., and Schuman, H. A. (1985).J. Bacteriol. 163, 654–660.

    Google Scholar 

  • Treptow, N. A., and Schuman, H. A. (1988).J. Mol. Biol. 202, 809–822.

    Google Scholar 

  • Vyas, N. K., Vyas, M. N., and Quiocho, F. A. (1987).Nature (London)327, 635–638.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982).EMBO J. 1, 945–951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, C.F., Hyde, S.C., Mimmack, M.M. et al. Binding protein-dependent transport systems. J Bioenerg Biomembr 22, 571–592 (1990). https://doi.org/10.1007/BF00762962

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762962

Key Words

Navigation