International Journal of Salt Lake Research

, Volume 6, Issue 3, pp 233–248 | Cite as

Hydrobiology of a salt pan from the Peninsula of Baja California, Mexico

  • Erika Del Castillo Arias
  • Claudia Farfán


The study site, a salt pan in the northwest of Baja California, Mexico, has a surface area of 33.2 ha and water capacity of 216,072 m3. It is intermittently isolated from the adjacent ocean by a sand bar, so that flooding via the coastal plain is a low frequency event associated with extreme storm conditions. Temporal changes in water volume were represented by a particular expression of the mass conservation equation having as variables the volumetric capacity of the system, water inputs by pluvial precipitation, runoff and infiltration, and water loss by evaporation; the numerical model explained over 80 per cent of observed fluctuations. The hydrobiological study covered a three-year period and two hydrological cycles; the first one was of mixed marine and pluvial origin, and the second, continental. Throughout the first cycle, phosphate and nitrate concentrations were up to one order of magnitude higher as were total particulate protein, chlorophyll a and phytoplankton abundance. In general, nannoplankton abundance was up to three orders of magnitude greater than the microphlanktonic fraction. In the former, 29 different cell forms were observed; two halophytic bacteria constituted 60–80 per cent of that fraction. In the microplankton, there were 27 different forms; most were benthic diatoms. The zooplanktonic assemblages of the first cycle had marine and continental elements; at 141 per mille,Artemia sp. first appeared; at 240 per mille, it was the only faunistic element in the system. During the second cycle,Artemia was always present, co-existing with other continental species up to a salinity of 99 per mille. The morphology and morphometry ofArtemia were similar to those ofArtemia franciscana.

Key words

hydrobiology hypersaline environment temporal changes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amat F. 1980. Differentiation inArtemia strains from Spain In: G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers (Eds) The Brine ShrimpArtemia. Vol. 1 Morphology, Genetics, Radiobiology, Toxicology pp. 19–39. Universa Press, Wetteren, Belgium.Google Scholar
  2. Bowen, S.T., Davis, M.L., Fenster, S.R. and Lindwall, G.A. 1980. Sibling species ofArtemia. In: G. Persone, P. Sorgeloos, O. Roels and E. Jaspers (Eds.), The Brine ShrimpArtemia. Vol. 1, pp. 155–167. Universa Press. Wetteren, Belgium.Google Scholar
  3. Brown, S., Margulis, L., Ibarra, S. and Siqueiros, D. 1985. Desiccation resistance and contamination as mechanisms of GAIA. Biosystems 17: 337–360.PubMedCrossRefGoogle Scholar
  4. Carpelan, L.H. 1957. Hydrobiology of the Alviso Salt Ponds Ecology 38(3): 375–390.CrossRefGoogle Scholar
  5. Correa Sandoval, F. and Bückle Ramírez, L.F. 1993. Morfología y biometría de cinco poblaciones deArtemia franciscana (Anostraca: Artemiidae). Rev. Biol. Tropical 41(1): 103–110.Google Scholar
  6. Dayton, P.K. and Tegner, M.J. 1984. Catastrophic storms, El Niño, and patch stability in a southern California kelp community. Science 224: 283–285.PubMedGoogle Scholar
  7. Dunne, T. and Leopold, L.B. 1978. Water in Environmental Planning, Part 4, pp. 95–125. W.H. Freeman and Co., San Francisco.Google Scholar
  8. Edler, L. 1979. Recommendations for marine biological studies in the Baltic Sea: Phytoplankton and chlorophyll. National Swedish Environmental Protection Board 38.Google Scholar
  9. Gieskes, J.M. 1974. Interstitial water studies. In: E.S.W. Semspan and R. Schlech (Eds) Initial Reports of the Deep Sea Drilling Project, Vol. 25. U.S. Govt. Printing Office, Washington.Google Scholar
  10. Gilbert, P.M. and Goldman, J.C. 1981. Rapid ammonium uptake by natural marine phytoplankton. Mar. Biol. Lett. 2: 25–31.Google Scholar
  11. Grasshoff, K. 1976. Methods of Sea Water Analysis. Verlag Chemie, New York. 317 pp.Google Scholar
  12. Harbeck, E. Jr. 1955. The effect of salinity on evaporation. Geological Survey Professional Paper 2782(A): 1–6.Google Scholar
  13. Helfrich, P. 1973. The Feasibility of Brine Shrimp Production on Christmas Island. A Grant Technical Report UNIHI-SEA GRANT TR-73-02 173 pp.Google Scholar
  14. Horodyski, R.J. 1977.Lyngbya mats at Laguna Mormona, Baja California, Mexico: comparison with proterozoic stromatolites. Journal of Sedimentary Petrology 47(3): 1305–1320.Google Scholar
  15. INEGI. 1984. Síntesis Geográfica del Estado de Baja California. Anexo Cartográfico. Sria de Programaciòn y Presupuesto, 165 pp.Google Scholar
  16. Iltis, A., Risacher, F. and Servant-Vildary, S. 1984. Contribution á l'étude hydrobiologique des lacs salés du sud de I'Altiplano bolivien. Rev. Hydrobiol. Trop. 17(3): 259–273.Google Scholar
  17. Javor, B.J. 1983. Planktonic standing crop and nutrients in a saltern ecosystem. Limnol. Oceanogr. 28(1): 153–159.Google Scholar
  18. Jones, A., Ewing, C.M. and Melvin, M.V. 1981. Biotechnology of solar saltfields. Hydrobiologia 82: 391–406.CrossRefGoogle Scholar
  19. Komar, P.D. 1986. The 1982–83 El Niño and erosion on the coast of Oregon. Shore and Beaches 54(2): 3–12.Google Scholar
  20. Luna Machado, W. 1984. Avalicáo do potencial salineiro para cultivo deArtemia, no estado do Ceará (Brasil). Boletin de Ciencias do Mar 39: 1–24.Google Scholar
  21. Margulis, L., Barghoorn, E.S., Ashendorf, D., Banerjee, S., Chase, D., Francis, S., Giovannoni, S. and Stoltz, J.F. 1980. The microbial community in layered sediments at laguna Figueroa, Baja California, Mexico, Does it have Precambrian analogues. Precambrian Research 11: 92–123.CrossRefGoogle Scholar
  22. Markwell, M.A.K., Haas, S.M., Tolbert, N.E. and Beiber, L.L. 1981. Protein determination in membrane and lipoprotein samples: manual and automated procedure. Methods in Enzimology 72(16): 196–303.Google Scholar
  23. Onishi, H. and Gibbons, N.E. 1965. Some observation on the stimulative effect of ammonium ion on the growth ofHalobacterium cutirubrum. Canadian Journal of Microbiology 11: 1032–1034.PubMedGoogle Scholar
  24. Oren, A. 1985. The rise and decline of a bloom of halobacteria in the Dead Sea. Limnol. Oceanogr. 30(4): 911–915.Google Scholar
  25. Peña, H.C. and Sánchez, A.J. 1985. Modelo estadistico de eventos extremos de olas para el Puerto de Ensenada, B.C. In: J. Urrutia, T. Fucugauchi and J.F. Valdés-Galicia (Eds) Memorias de la Reunión Anual 1985 de la Unión Geofísica Mexicana. Nov. 10–16, Oaxaca, Oax. Mexico.Google Scholar
  26. Phleger, F.B. 1965. Sedimentology of Guerrero Negro Lagoon, Baja California, Mexico. Colston Papers 17: 205–237.Google Scholar
  27. Phleger, F.B. 1969. A modern evaporate deposit in Mexico. Bull. Am. Assoc. Petrol. Geol. 53: 824–829.Google Scholar
  28. Phleger, F.B. and Ewing, G.C. 1962. Sedimentology and oceanography of coastal lagoons in Baja California, Mexico. Geological Soc. of Am. Bull. 73: 145–182.Google Scholar
  29. Post, F.J. 1977. The microbial ecology of the Great Salt Lake. Microbial Ecology 3: 143–165.CrossRefGoogle Scholar
  30. Postma, H. 1965. Water circulation and suspended matter in Baja California Lagoons. Netherlands J. Sea Res. 2(4): 566–604.CrossRefGoogle Scholar
  31. Sournia, A. 1978. Phytoplankton Manual. UNESCO, Paris, 337 pp.Google Scholar
  32. Stephens, D.W. and Gillespie, D.M. 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnol. Oceanogr. 21: 74–87.CrossRefGoogle Scholar
  33. Strickland, J.D.H. and Parsons, T.R. 1977. A practical handbook of seawater analysis. Bull. Fish Res. Board Canada, 167 pp.Google Scholar
  34. Syrett, P.J. 1981. Nitrogen and metabolism and microalgae. In: T. Plant (Ed) Physiological Bases of Phytoplanton Ecology, pp. 182–210. Can. Bull. Fish and Aquatic Sci. 210, 346 pp.Google Scholar
  35. Vanheackle and Sorgeloos, P. 1980. International study onArtermia. IV. The biometrics ofArtemia strains from different origins In: G. Persone, P. Sorgeloos, O. Roels and E. Jaspers (Eds) The Brine ShrimpArtemia. Vol. 1, pp. 393–405. Universa Press. Wetteren, Belgium.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Erika Del Castillo Arias
    • 1
  • Claudia Farfán
    • 1
  1. 1.Centro de Investigación Científica y de Educación Superior de Ensenada (C.I.C.E.S.E.)Baja CaliforniaMéxico

Personalised recommendations