Participation of cholesterol in hypochlorite-induced oxidation of cholesterol-phosphatidylcholine liposomes

  • K. T. Momynaliev
  • V. M. Govorum
  • O. M. Panasenko
  • V. I. Sergienko
Biophysics and Biochemistry

Abstract

The effect of cholesterol on hypochlorite-induced lipid peroxidation is studied in cholesterol-phosphatidylcholine liposomes. Cholesterol is shown to promote the accumulation of lipid peroxidation products in the presence of 0.1–3 mM hypochlorite anion in the incubation medium. The content of 2-thiobarbituric acid-reactive products is maximal at a cholesterol: phosphatidylcholine molar ratio of 1∶1. On the other hand, in the presence of low hypochlorite concentrations (10–100 μM) cholesterol is found to inhibit lipid peroxidation.

Key Words

hypochlorite lipid peroxidation cholesterol phosphatidylcholine liposomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Vladimirov and A. I. Archakov,Lipid Peroxidation in Biological Membranes [in Russian], Moscow (1972), pp. 1–252.Google Scholar
  2. 2.
    S. A. Evgina, O. M. Panasenko, V. I. Sergienko, and Yu. A. Vladimirov,Biol. Membr.,9, 946–953 (1992).Google Scholar
  3. 3.
    V. G. Ivkov and G. N. Berestovskii, in:Dynamic Structure of the Lipid Bilayer [in Russian], Moscow (1981), pp. 40–244.Google Scholar
  4. 4.
    O. M. Panasenko and V. I. Sergienko,Biol. Member.,10, 341–382 (1993).Google Scholar
  5. 5.
    V. I. Sergienko, A. K. Martynov, Yu. B. Vasil'ev,et al., Vopr. Med. Khim.,36, 28–32 (1990).PubMedGoogle Scholar
  6. 6.
    Biological Membranes. A Practical Approach, Eds. J. B. C. Findlay and W. H. Evans, IRL Press, Ltd. Oxford-Washington, DC (1987).Google Scholar
  7. 7.
    S. Batary and E. D. Kom,Biochim. Biophys. Acta,298, 1015–1019 (1973).CrossRefGoogle Scholar
  8. 8.
    S. W. Edwards,Biochemistry and Physiology of Neutrophils, Cambridge (1994).Google Scholar
  9. 9.
    J. W. Heinecke, D. M. Mueller, A. Bohrer and J. Turk,Biochemistry,33, 10127–10136 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    O. M. Panasenko, J. Arnhold, J. Schiller,et al., Biochim. Biophys. Acta,1215, 259–266 (1994).PubMedGoogle Scholar
  11. 11.
    O. M. Panasenko, S. A. Evgina, R. K. Aidyraliev,et al., Free Radic. Biol. Med.,16, 143–148 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Uchiyama and M. Michara,Anal. Biochem.,86, 271–278 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    J. J. Van der Berg, C. C. Winterbourn, and F. A. Kuypers,J. Lipid Res.,34, 2005–2012 (1993).PubMedGoogle Scholar
  14. 14.
    V. E. Vaskovsky, E. J. Kostetsky, and J. M. Vasendin,J. Chromatogr.,114, 129–141 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    C. C. Winterbourn and A. C. Carr,Arch. Biochem. Biophys.,302, 461–467 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • K. T. Momynaliev
    • 1
  • V. M. Govorum
    • 1
  • O. M. Panasenko
    • 1
  • V. I. Sergienko
    • 1
  1. 1.Research Institute of Physicochemical MedicineRussian Ministry of Health and the Medical IndustryMoscow

Personalised recommendations