Simulation of time-resolved breast transillumination

  • E. B. de Haller
  • C. Depeursinge
Medical Physics and Imaging

Abstract

A Monte Carlo simulation has been developed to predict the quality of time-resolved images of the breast by transillumination. The smallest diameter of a detectable carcinoma located in the breast has been computed. The simulation suggests that time-resolved imaging of the breast is possible and invaluable in the near infra-red (NIR) by transillumination. The enhancement of the transfer function by the introduction of time-resolved detection is limited by the contribution of noise at short integration times. The estimated diameter of the smallest detectable sphere is derived from the image quality index (IQI) theory and its value is around 4 mm. The simulated images of an absorbing sphere (approximating the carcinoma) within a homogeneous medium (approximating the surrounding tissue) show a significant improvement of the image with short integration time.

Keywords

Breast cancet Image quality index Monte Carlo Time of flight Transillumination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barer, R., Ross, K. F. andTkaczyk, S. (1953) Refractometry of living cells.Nature,171, 720–724.CrossRefGoogle Scholar
  2. Bevilacqua, F. (1990) Etude expérimentale de la lumière retrodiffusée à travers la peau (in French). Diploma thesis, Ecole Polytechnique Fédérale de Lausanne.Google Scholar
  3. Carlsen, E. (1982) Transillumination light scanning.Diagn. Imaging,4, 26–60.Google Scholar
  4. Cutler, M. (1929) Transillumination as an aid in the diagnosis of breast lesions.Surg. Gynecol. Obstet.,48, 721–730.Google Scholar
  5. Dainty, J. C. (1975) Laser speckle and related phenomena. InRecent results in cancer research.Brünner, S., Langfeldt, B. andAndersen, P. E. (Eds.), Springer Verlag, Berlin, 9–75Google Scholar
  6. De Haller, E. B. andDepeursinge, C. (1991) A cutaneous sensor for oximetry.Innov. Tech. Biol. Med.,12, 89–97.Google Scholar
  7. DePalma, J. J. andGasper, J. (1972) Determining the optical properties of photographic emulsions by the Monte-Carlo method.Photogr. Sci. & Eng.,16, 181–191.Google Scholar
  8. Desponds, L., Depeursinge, C., Grecescu, M., Hessler, C., Samiri, A. andValley, J. F. (1991) Image quality index (IQI) for screen-film mammography.Phys. in Med. & Biol.,36, 19–33.CrossRefGoogle Scholar
  9. Ertefai, S. andProfio, A. E. (1985) Spectral transmittance and contrast in breast diaphanography.Med. Phys.,12, 393–400.CrossRefGoogle Scholar
  10. Feig, S. A. (1984) Benefits and risks of mammography. InRecent results in cancer research.Brünner, S., Langfeldt, B. andAndersen, P. E. (Eds.) Springer-Verlag, Berlin,90, 11–27.Google Scholar
  11. Flock, S. T., Wilson, B. C. andPatterson, M. S. (1987) Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm.Med. Phys.,14, 835–841.CrossRefGoogle Scholar
  12. Harris, J. L. (1964) Resolving power and decision theory.J. Opt. Soc. Am.,54, 606–611.Google Scholar
  13. Hebden, J. C. andKruger, R. A. (1990a) Transillumination imaging performance: Spatial resolution simulation studies.Med. Phys.,17, 41–47.CrossRefGoogle Scholar
  14. Hebden, J. C. andKruger, R. A. (1990b) Transillumination imaging performance: a time of flight imaging system. —Ibid.,,17, 351–356.CrossRefGoogle Scholar
  15. Henyey, L. G. andGreenstein, J. L. (1941) Diffuse radiation in the galaxy.Astrophys. J.,93, 70–83.CrossRefGoogle Scholar
  16. Jacques, S. L., Prahl, S. A. andAlter, C. A. (1987) Angular dependence of HeNe laser light scattering by human dermis.Lasers Life Sci,1, 309–333.Google Scholar
  17. Jacques, S. L. (1989) Time-resolved reflectance spectroscopy in turbid tissues.IEEE Trans.,BME-36, 1155–1161.Google Scholar
  18. Kalos, H. M. andWhitlock, P. A. (Eds.) (1986)Monte-Carlo methods. John Wiley & Sons, Vol. 1, 140–144.Google Scholar
  19. Kruger, R. A. andHebden, J. C. (1990) Scanning for time-of-flight optical imaging. Proc. 12th Ann. IEEE Eng. in Med. & Biol. Soc., Philadelphia, Pennsylvania, 1st-4th Nov., 1122–1123.Google Scholar
  20. Kullenberg, G. (1974) Observed and computed scattering functions. InOptical aspects of oceanography.Jerlov, N. G. andNielsen, M. (Eds.), Academic Press, London, 25–49.Google Scholar
  21. Loo, L. N., Doi, K. andMetz, C. E. (1984) A comparison of physical image quality indices and observers performance in the radiographic detection of nylon beads.Phys. Med. Biol.,29, 837–856.CrossRefGoogle Scholar
  22. Maarek, J. M., Jarry, G., Crowe, J., Bui-Mong-Hung andLaurent, D. (1986) Simulation of laser tomoscopy in a heterogeneous biological medium.Med. & Biol. Eng. & Comput.,24, 407–414.CrossRefGoogle Scholar
  23. Marquet, P. (1990) Etude théorique, par la méthode de Monte Carlo, de la lumière retro-diffusée à travers la peau (in French). Diploma thesis, Ecole Polytechnique Fédérale de Lausanne.Google Scholar
  24. Monnier, P., Savary, M., Fontolliet, C., Wagnières, G., Chatelain, A., Cornaz, P., Depeursinge, C. andvan den Bergh, H. (1990) Photodetection and photodynamic therapy of early squamous cell carinomas of the pharynx, oesophagus and tracheo-bronchial tree.Lasers Med. Sci.,5, 149–169.CrossRefGoogle Scholar
  25. Monsees, B., Destouret, J. M. andGersell, D. (1988) Light scanning of nonpalpable breast lesions: re-evaluation.Radiol.,16, 352.Google Scholar
  26. Navarro, G. A. andProfio, A. E. (1988) Contrast in diaphanography of the breast.Med. Phys.,15, 181–187.CrossRefGoogle Scholar
  27. Peters, V. G., Wyman, D. R., Patterson, M. S. andFrank, G. L. (1990) Optical properties of normal and diseased human breast tissues in the visible and near-infrared.Phys. in Med. & Biol.,35, 1317–1334.CrossRefGoogle Scholar
  28. Pochon, Y. (1983) Objective criteria of quality in radiological images (in French). Thesis 479, Ecole Polytechnique Fédérale de Lausanne.Google Scholar
  29. Rose, A. (1948) The sensitivity performance of the human eye on an absolute scale.J. Opt. Sci. Am.,38, 196–208.CrossRefGoogle Scholar
  30. Rose, A. (1973)Vision: human and electronic.Wolfe, W. L. (Ed.), Plenum Press, New York, 37–39.Google Scholar
  31. Shapiro, S., Venet, W., Strax, P., Venet, L. andRoeser, R. (1982) Ten- to fourteen-year effect of screening on breast cancer mortality.JNCI,69, 349–355.Google Scholar
  32. van Gemert, M. J. C., Jacques, S. L., Sterenborg, H. J. C. M., Star, W. M. andWelch, A. J. (1988) Analysis of light distribution in tissue. Proc. SPIE Conf. Laser Interact. with Tissue,908, 12–19.Google Scholar
  33. Watmough, D. J. (1982) Diaphanography.Acta Radiolog. Oncol.,21, 11–15.Google Scholar
  34. Wichmann, B. andHill, D. (1987) Generation of pseudorandum numbers.Byte, March, 127–128.Google Scholar
  35. Wilson, B. C. andAdam, G. (1983) A Monte-Carlo mode for the absorption and flux distributions of light in tissues.Med. Phys.,10, 824–830.CrossRefGoogle Scholar
  36. Wilson, B. C. andPatterson, M. S. (1986) The physics of photodynamic therapy.Phys. in Med. & Biol.,31, 327–360.CrossRefGoogle Scholar
  37. Yong Teck, Q. K. (1989) Dévelopment d'un modèle de la propagation de la lumière visible et proche-infrarouge dans les tissus: prévision théorique et vérification expérimentale (in French). Dipoloma thesis, Ecole Polytechnique Fédérale de Lausanne.Google Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • E. B. de Haller
    • 1
  • C. Depeursinge
    • 1
  1. 1.Laboratoire de Génie MédicalEcole Polytechnique Fédérale de LausanneEcublensSwitzerland

Personalised recommendations