Skip to main content
Log in

Simulation of time-resolved breast transillumination

  • Medical Physics and Imaging
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A Monte Carlo simulation has been developed to predict the quality of time-resolved images of the breast by transillumination. The smallest diameter of a detectable carcinoma located in the breast has been computed. The simulation suggests that time-resolved imaging of the breast is possible and invaluable in the near infra-red (NIR) by transillumination. The enhancement of the transfer function by the introduction of time-resolved detection is limited by the contribution of noise at short integration times. The estimated diameter of the smallest detectable sphere is derived from the image quality index (IQI) theory and its value is around 4 mm. The simulated images of an absorbing sphere (approximating the carcinoma) within a homogeneous medium (approximating the surrounding tissue) show a significant improvement of the image with short integration time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barer, R., Ross, K. F. andTkaczyk, S. (1953) Refractometry of living cells.Nature,171, 720–724.

    Article  Google Scholar 

  • Bevilacqua, F. (1990) Etude expérimentale de la lumière retrodiffusée à travers la peau (in French). Diploma thesis, Ecole Polytechnique Fédérale de Lausanne.

  • Carlsen, E. (1982) Transillumination light scanning.Diagn. Imaging,4, 26–60.

    Google Scholar 

  • Cutler, M. (1929) Transillumination as an aid in the diagnosis of breast lesions.Surg. Gynecol. Obstet.,48, 721–730.

    Google Scholar 

  • Dainty, J. C. (1975) Laser speckle and related phenomena. InRecent results in cancer research.Brünner, S., Langfeldt, B. andAndersen, P. E. (Eds.), Springer Verlag, Berlin, 9–75

    Google Scholar 

  • De Haller, E. B. andDepeursinge, C. (1991) A cutaneous sensor for oximetry.Innov. Tech. Biol. Med.,12, 89–97.

    Google Scholar 

  • DePalma, J. J. andGasper, J. (1972) Determining the optical properties of photographic emulsions by the Monte-Carlo method.Photogr. Sci. & Eng.,16, 181–191.

    Google Scholar 

  • Desponds, L., Depeursinge, C., Grecescu, M., Hessler, C., Samiri, A. andValley, J. F. (1991) Image quality index (IQI) for screen-film mammography.Phys. in Med. & Biol.,36, 19–33.

    Article  Google Scholar 

  • Ertefai, S. andProfio, A. E. (1985) Spectral transmittance and contrast in breast diaphanography.Med. Phys.,12, 393–400.

    Article  Google Scholar 

  • Feig, S. A. (1984) Benefits and risks of mammography. InRecent results in cancer research.Brünner, S., Langfeldt, B. andAndersen, P. E. (Eds.) Springer-Verlag, Berlin,90, 11–27.

    Google Scholar 

  • Flock, S. T., Wilson, B. C. andPatterson, M. S. (1987) Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm.Med. Phys.,14, 835–841.

    Article  Google Scholar 

  • Harris, J. L. (1964) Resolving power and decision theory.J. Opt. Soc. Am.,54, 606–611.

    Google Scholar 

  • Hebden, J. C. andKruger, R. A. (1990a) Transillumination imaging performance: Spatial resolution simulation studies.Med. Phys.,17, 41–47.

    Article  Google Scholar 

  • Hebden, J. C. andKruger, R. A. (1990b) Transillumination imaging performance: a time of flight imaging system. —Ibid.,,17, 351–356.

    Article  Google Scholar 

  • Henyey, L. G. andGreenstein, J. L. (1941) Diffuse radiation in the galaxy.Astrophys. J.,93, 70–83.

    Article  Google Scholar 

  • Jacques, S. L., Prahl, S. A. andAlter, C. A. (1987) Angular dependence of HeNe laser light scattering by human dermis.Lasers Life Sci,1, 309–333.

    Google Scholar 

  • Jacques, S. L. (1989) Time-resolved reflectance spectroscopy in turbid tissues.IEEE Trans.,BME-36, 1155–1161.

    Google Scholar 

  • Kalos, H. M. andWhitlock, P. A. (Eds.) (1986)Monte-Carlo methods. John Wiley & Sons, Vol. 1, 140–144.

  • Kruger, R. A. andHebden, J. C. (1990) Scanning for time-of-flight optical imaging. Proc. 12th Ann. IEEE Eng. in Med. & Biol. Soc., Philadelphia, Pennsylvania, 1st-4th Nov., 1122–1123.

  • Kullenberg, G. (1974) Observed and computed scattering functions. InOptical aspects of oceanography.Jerlov, N. G. andNielsen, M. (Eds.), Academic Press, London, 25–49.

    Google Scholar 

  • Loo, L. N., Doi, K. andMetz, C. E. (1984) A comparison of physical image quality indices and observers performance in the radiographic detection of nylon beads.Phys. Med. Biol.,29, 837–856.

    Article  Google Scholar 

  • Maarek, J. M., Jarry, G., Crowe, J., Bui-Mong-Hung andLaurent, D. (1986) Simulation of laser tomoscopy in a heterogeneous biological medium.Med. & Biol. Eng. & Comput.,24, 407–414.

    Article  Google Scholar 

  • Marquet, P. (1990) Etude théorique, par la méthode de Monte Carlo, de la lumière retro-diffusée à travers la peau (in French). Diploma thesis, Ecole Polytechnique Fédérale de Lausanne.

  • Monnier, P., Savary, M., Fontolliet, C., Wagnières, G., Chatelain, A., Cornaz, P., Depeursinge, C. andvan den Bergh, H. (1990) Photodetection and photodynamic therapy of early squamous cell carinomas of the pharynx, oesophagus and tracheo-bronchial tree.Lasers Med. Sci.,5, 149–169.

    Article  Google Scholar 

  • Monsees, B., Destouret, J. M. andGersell, D. (1988) Light scanning of nonpalpable breast lesions: re-evaluation.Radiol.,16, 352.

    Google Scholar 

  • Navarro, G. A. andProfio, A. E. (1988) Contrast in diaphanography of the breast.Med. Phys.,15, 181–187.

    Article  Google Scholar 

  • Peters, V. G., Wyman, D. R., Patterson, M. S. andFrank, G. L. (1990) Optical properties of normal and diseased human breast tissues in the visible and near-infrared.Phys. in Med. & Biol.,35, 1317–1334.

    Article  Google Scholar 

  • Pochon, Y. (1983) Objective criteria of quality in radiological images (in French). Thesis 479, Ecole Polytechnique Fédérale de Lausanne.

  • Rose, A. (1948) The sensitivity performance of the human eye on an absolute scale.J. Opt. Sci. Am.,38, 196–208.

    Article  Google Scholar 

  • Rose, A. (1973)Vision: human and electronic.Wolfe, W. L. (Ed.), Plenum Press, New York, 37–39.

    Google Scholar 

  • Shapiro, S., Venet, W., Strax, P., Venet, L. andRoeser, R. (1982) Ten- to fourteen-year effect of screening on breast cancer mortality.JNCI,69, 349–355.

    Google Scholar 

  • van Gemert, M. J. C., Jacques, S. L., Sterenborg, H. J. C. M., Star, W. M. andWelch, A. J. (1988) Analysis of light distribution in tissue. Proc. SPIE Conf. Laser Interact. with Tissue,908, 12–19.

    Google Scholar 

  • Watmough, D. J. (1982) Diaphanography.Acta Radiolog. Oncol.,21, 11–15.

    Google Scholar 

  • Wichmann, B. andHill, D. (1987) Generation of pseudorandum numbers.Byte, March, 127–128.

    Google Scholar 

  • Wilson, B. C. andAdam, G. (1983) A Monte-Carlo mode for the absorption and flux distributions of light in tissues.Med. Phys.,10, 824–830.

    Article  Google Scholar 

  • Wilson, B. C. andPatterson, M. S. (1986) The physics of photodynamic therapy.Phys. in Med. & Biol.,31, 327–360.

    Article  Google Scholar 

  • Yong Teck, Q. K. (1989) Dévelopment d'un modèle de la propagation de la lumière visible et proche-infrarouge dans les tissus: prévision théorique et vérification expérimentale (in French). Dipoloma thesis, Ecole Polytechnique Fédérale de Lausanne.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Haller, E.B., Depeursinge, C. Simulation of time-resolved breast transillumination. Med. Biol. Eng. Comput. 31, 165–170 (1993). https://doi.org/10.1007/BF02446675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446675

Keywords

Navigation