Skip to main content
Log in

Simulation of laser tomoscopy in a heterogeneous biological medium

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A Monte Carlo model has been developed to study the propagation of an ultrashort light pulse through a heterogeneous thick biological specimen. A circular blood vessel is moved within a tissular slab to simulate biological specimen scanning using a picosecond laser source and a collimated ultrafast multichannel opticl shutter. Features of the transmitted light are computed for each position of the blood vessel. The computer program gives an account of the transmitted photons, the flight time which does not exceed straightforward crossing time plus time gate of known duration. A small blood vessel (radius R=2 mm) placed in a 40 mm thick slab is easily located when a time gate of 10 ps duration is employed. Such a time gate also allows the detection of a middle-sized vessel (R=4 mm) embedded in a thicker sample (80 mm). The contrast computed for the transmittance profile is greatly improved when a time gate is used. In addition, shifting of the blood vessel towards the unilluminated side of the sample decreases the contrast. We demonstrate that the time selection process may provide a substantial improvement to the laser tomoscopy technique when used for imaging biological media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barer, R., Ross, K. F. A. andTkaczyk, S. (1953) Refractometry of living cells.Nature,171, 720–724.

    Article  Google Scholar 

  • Carter, L. L., andCashwell, E. D. (1967) Particle transport simulation with the Monte-Carlo method. National Technical Information Service, US Department of Commerce, Springfield, Virginia.

    Google Scholar 

  • de Palma, J. J. andGasper, J. (1972) Determining the optical properties of photographic emulsions by the Monte-Carlo method.Photogr. Sci. Eng.,16, 181–191.

    Google Scholar 

  • Duguay, M. A. andMattick, A. T. (1971) Ultra high speed photography of picosecond light pulses and echoes.Appl. Opt.,10, 2162–2170.

    Google Scholar 

  • Dunn, W. L. (1981) Inverse Monte-Carlo analysis.J. Comput. Phys.,41, 154–166.

    Article  MATH  MathSciNet  Google Scholar 

  • Ghesquiere, S., Debray, S., Maarek, J. M., Fraysse, F., Besson, B., Bui-Mong-Hung andJarry, G. (1984) L'image par transillumination collimatée de tissus et d'organes de mammifères.Innov. Tech. Biol. Med.,5, 22–32.

    Google Scholar 

  • Goldman, L. (1979) Laser diagnostic medicine. Proc. Laser Optoelectronics 79, IPC. Sc. & Techn. Press, 327–329.

  • Gros, C., Quenneville, Y. andHummel, U. (1972) Diaphanologie mammaire.J. Radiol. Electrol,53, 297–306.

    Google Scholar 

  • Jarry, G., Ghesquiere, S., Maarek, J. M., Fraysse, F., Debray, S., Bui-Mong-Hung andLaurent, D. (1984) Imaging mammalian tissues and organs using laser collimated transillumination.J. Biomed. Eng.,6, 70–74.

    Google Scholar 

  • Jobsis, F. F. (1977) Non invasive monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.Science,198, 1264–1267.

    Google Scholar 

  • Leimdorfer, M. (1964) A Monte-Carlo method for the analysis of gamma radiation transport from distributed sources in laminated shields.Nukleonik 6, 58–65.

    Google Scholar 

  • Levitt, L. B. (1968) The use of self optimized exponential biasing in obtaining Monte-Carlo estimates of transmission probabilities.Nucl. Sci. Eng.,31, 500–504.

    Google Scholar 

  • Longini, R. L. andZdrojkowski, R. J. (1968) A note on the theory of backscattering of light by living tissue.IEEE Trans.,BME-15, 4–10.

    Google Scholar 

  • Maarek, J. M., Jarry, G., Rousseaux, J. C., Ghesquiere, S., Mathy, J. M. andBui-Mong-Hung (1982) Etude de la diffusion et de la transmission optiques dans les tissus biologiques à l'aide de fibres optiques et de lasers. Proc. Laser Médical 82, Masson, Paris, 56–58.

    Google Scholar 

  • Maarek, J. M., Jarry, G., de Cosnac, B. andBui-Mong-Hung (1982) Simulation of transillumination through blood and tissues. Proc. World Cong. on Biomed. Eng., Hamburg, 22–30.

  • Maarek, J. M., Jarry, G., de Cosnac, B., Lansiart, A. andBui-Mong-Hung (1984) A simulation method for the study of laser transillumination of biological tissues.Ann. Biomed. Eng.,12, 281–304.

    Article  Google Scholar 

  • Martin, J. L., Lecarpentier, Y., Antonetti, A. andGrillon, G. (1980) Picosecond laser stereometry light scattering measurements on biological material.Med. & Biol. Eng. & Comput.,18, 250–252.

    Article  Google Scholar 

  • Nakase, M. (1983) Determination of the MTF of positive photoresistes using the Monte-Carlo method.Photogr. Sci. Eng.,27, 254–260.

    Google Scholar 

  • Reynolds, L., Johnson, C. andIshimaru, A. (1976) Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters.Appl. Optics,15, 2059–2067.

    Article  Google Scholar 

  • Swain, C. G. andSwain, M. S. (1980) A uniform random number generator that is reproducible, hardware independant and fast.J. Chem. Inf. Comput. Sci.,20, 56–58.

    Article  Google Scholar 

  • Swick, H. M., Cunningham, M. D. andShield, L. K. (1976) Transillumination of the skull in premature infants.Pediatrics,58, 658–664.

    Google Scholar 

  • Takatani, S. (1978) On the theory and development of a non invasive tissue reflectance oximeter. Ph. D. Dissertation, Case Western Reserve University, Cleveland, Ohio, USA.

    Google Scholar 

  • Takatani, S. andGraham, M. D. (1979) Theoretical analysis of diffuse reflectance from a two-layer tissue model.IEEE Trans.,BME-26, 656–664.

    Google Scholar 

  • Wilson, B. C. andAdam, G. (1983) A Monte-Carlo model for the absorption and flux distribution of light in tissue.Med. Phys.,10, 824–830.

    Article  Google Scholar 

  • Zdrojkowski, R. J. andPisharoty, N. R. (1970) Optical transmission and reflection by blood.IEEE Trans.,BME-17, 122–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maarek, J.M., Jarry, G., Crowe, J. et al. Simulation of laser tomoscopy in a heterogeneous biological medium. Med. Biol. Eng. Comput. 24, 407–414 (1986). https://doi.org/10.1007/BF02442696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442696

Keywords

Navigation