Skip to main content
Log in

Mathematical simulation of an amperometric enzyme-substrate electrode with apO2 basic sensor

Part 2 Mathematical simulation of the glucose oxidase glucose electrode

  • Transducers and Electrodes
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

In the first part of the paper a mathematical model of the enzyme-substrate electrode with a pO2 basic sensor was outlined. This model is used to simulate the dependencies of the measuring characteristics (calibration curve, measuring range, sensitivity, response time) on the design parameters (geometric arrangement, membrane properties, enzyme kinetic quantities) of an enzyme-based glucose sensor. The simulated and measured calibration curves are in good agreement with each other. With decreasing pO2 a stoichiometric limitation occurs, and the linear range of measurement is reduced. If catalase is co-immobilised together with glucose oxidase the oxygen consumption is halved and the measuring range is doubled. The infuences of the diffusion coefficients and of the specific enzyme activity on sensitivity and response time are simulated. The results are in good correspondence with the theoretical statements and the experimental results. The limits of the model are determined by its convergence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area

Bi :

mass transfer Biot number

c :

concentration

D :

diffusion coefficient

F :

Faraday constant

H :

height

ΔI :

glucose-dependent sensor current

K m :

Michaelis constant

L :

thickness

M G :

Thiele modulus

n :

number of electrons

\(\hat P\) :

permeability

pO2 :

oxygen partial pressure

R :

radius

S :

Bunsen solubility coefficient

V ij :

partition coefficient at the interface between the two adjacent phasesi andj

v :

reaction rate

V max :

maximum reaction rate per unit volume

α:

solute partition coefficient

γ:

stoichiometry factor

\(\Phi _W \) :

volume fraction of free water

Θ:

tortuosity factor

1:

boundary layer

2:

external coupling membrane

3:

reaction layer

4:

internal covering membrane of the basic sensor

5:

internal electrolyte layer

B :

value in the bulk solution

CAT :

cathode

E :

external

EL :

electrode

G :

glucose

I :

internal

O :

oxygen

References

  • Abel, P., Müller, A. andFischer, U. (1984) Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell.Biomed. Biochim. Acta.,43, 577–584.

    Google Scholar 

  • Bessman, S. P. andShults (1973) Prototype glucose-oxygen sensor for the artificial pancreas.Trans. Am. Soc. Artif. Int. Organs,19, 380–384.

    Google Scholar 

  • Braselmann, H. (1980) Milieusteuerung von Transporteigenschaften schwachsaurer Ionenaustrauschermembranen. Thesis, Humboldt Universität, Berlin, German Democratic Republic.

    Google Scholar 

  • Gough, D. A., Leypoldt, J. K. andArmour, J. C. (1982) Progress toward a potentially implantable, enzyme-based glucose sensor.Diabetes Care,5, 190–198.

    Google Scholar 

  • Kondo, R., Ito, K., Okhura, K. andIkeda, S. (1982) A miniature glucose sensor implantable in the blood stream.,5, 218–221.

    Google Scholar 

  • Koyama, M., Sato, Y., Aizawa, A. andSuzuki, S. (1980) Improved enzyme sensor for glucose with an ultrafiltration membrane and immobilized glucose oxidase.Anal. Chim. Acta,116, 307–314.

    Article  Google Scholar 

  • Lemke, K. (1982) Kontinuierliche Bestimmung der Glukosekonzentration mit einer GOD-Glukose-Doppelelektrode in einer Durchflusskammer. 27. Intern. Wiss. Kolloquium der TH Ilmenau, G. Linnemann,4, 111–113.

    Google Scholar 

  • Lemke, K. (1988) Mathematical simulation of an amperometric enzyme-substrate electrode with apO2 basic sensor. Part 1 Mathematical model and simulation of thepO2 basic sensor.Med. & Biol. Eng. & Comput.,26, 523–532.

    Google Scholar 

  • Leypoldt, J. K. andGough, D. A. (1982) Diffusion and limiting substrate in two-substrate immobilized enzyme systems.Biotechnol. Bioeng.,14, 2705–2719.

    Article  Google Scholar 

  • Mackereth, F. J. H. (1964) An improved galvanic cell for determination of oxygen concentration in fluids.J. Sci. Instrum.,41, 38–41.

    Article  Google Scholar 

  • Mell, L. D. andMaloy, J. T. (1975) A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system.Anal. Chem.,47, 299–307.

    Article  Google Scholar 

  • Nanjo, M. andGuilbault, G. G. (1974) Enzyme electrode for L-amino acid and glucose.Anal. Chim. Acta,73, 367–373.

    Article  Google Scholar 

  • Notin, M., Guillien, R. andNabet, P. (1972) Le dosage du glucose sanguin à l'aide d'une électrode à enzyme.Ann. Biol. Clin.,30, 193–197.

    Google Scholar 

  • Rea, P. A., Rolfe, P. andGoddard, P. J. (1985) Assessment and optimisation of dip-coating procedure for the preparation of electroenzymic glucose transducers.Med. & Biol. Eng. & Comput. 23, 108–115.

    Google Scholar 

  • Reitnauer, P. G. (1975) Eine Meßsonde für Glukose. 2. Mitteilung: Internationaler Strand; weitere Messungen, Versuche und Erfahrungen mit der Glukosesonde.Z. Med. Labortechnik,16, 284–299.

    Google Scholar 

  • Shichiri, M., Kawamori, R., Goriya, Y., Yamasaki, Y., Nomura, M., Hakul, N. andAbe, H. (1983) Glycaemic control in pancreatectomized dogs with a wearable artificial endocrine pancreas.Diabetologia,24, 179–184.

    Article  Google Scholar 

  • Thévenot, D. R., Sternberg, R., Tallagrand, T. andReach, G. (1987) Methods and instruments for the evaluation of analytical performances of implantable glucose enzyme-based sensors. Workshop Implantable Glucose Sensors—The State of the Art, Reisensburg Castle, 4th–16th Jan., 14.

  • Updike, S. J. andHicks, G. P. (1967) The enzyme electrode, a miniature chemical transducer using immobilized enzyme activity.Nature,214, 986–988.

    Article  Google Scholar 

  • Vetter, K. J. (1961)Elektrochemische Kinetik. Springer-Verlag, Berlin, Göttingen, Heidelberg.

    Google Scholar 

  • Zahlmann, G. andLemke, K. (1984) Galvanisches Primärelement als Grundsensor für die GOD-Glukose-Elektrode.Z. Med. Lab. Diagn.,27, 268–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, K. Mathematical simulation of an amperometric enzyme-substrate electrode with apO2 basic sensor. Med. Biol. Eng. Comput. 26, 533–540 (1988). https://doi.org/10.1007/BF02441922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441922

Keywords

Navigation