Skip to main content
Log in

Localization of lysosomal and digestive enzymes in cytoplasmic vacuoles in caerulein-pancreatitis

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B,N-acetyl-β-glucosaminidase, and β-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000g fraction (purified zymogen granules). The corresponding subcellular fraction in pancreatitis animals additionally contained larger secretory vacuoles and autophagosomes and revealed a marked increase in lysosomal enzyme activities. Immunolabelling studies at the ultrastructural level for trypsinogen and cathepsin B demonstrated a colocalization of lysosomal and digestive enzymes in zymogen granules in healthy controls. After induction of pancreatitis immunolabelling still demonstrated a colocalisation of cathepsin B and trypsinogen in secretory granules and newly formed Golgi-derived secretory vacuoles. Concomitantly appearing autophagosomes were, however, only labelled for cathepsin B. It is concluded that segregation of lysosomal and digestive enzymes is incomplete in normal acinar cells resulting in a colocalization in zymogen granules. In pancreatitis colocalization in secretory granules is maintained, whereas only lysosomal enzymes were sufficiently transferred into autophagic vacuoles. No indication for impaired mechanisms of molecular sorting of lysosomal and digestive enzymes in caerulein-induced pancreatitis was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler G, Rohr G, Kern HF (1982) Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Dig Dis Sci 27:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Adler G, Hahn C, Kern HF, Rao RN (1985) Cerulein-induced pancreatitis in the rat: Increased lysosmal enzyme activity and autophagocytosis. Digestion 32:10–18

    Article  PubMed  CAS  Google Scholar 

  • Baggiolini M (1974) The isolation of granules from neutrophil polymorphonuclear leukocytes (PMNs). Methods Enzymol 318:348

    Google Scholar 

  • Barrett AJ, Kirschke H (1981) Cathepsin B, Cathepsin H, Cathepsin L. Methods Enzymol 151:533–561

    Google Scholar 

  • Erickson AH, Conner GE, Blobel G (1981) Biosynthesis of lysosomal enzymes. J Biol Chem 256:11224–11231

    PubMed  CAS  Google Scholar 

  • Figarella C, Vogt E, Hosli P (1982) Alkaline phosphatase and acid lysosomal hydrolases in pancreatic juice and fibroblast cell cultures of patients with chronic calcifying pancreatis. Eur J Clin Invest 12:145–149

    PubMed  CAS  Google Scholar 

  • Figura K von, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55:167–193

    Article  Google Scholar 

  • Gallin JI, Fletcher MP, Seligmann BE, Hoffstein S Cehrs K, Mounessa N (1982) Human neutrophil-specific granule deficiency: A model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood 59:1317–1329

    PubMed  CAS  Google Scholar 

  • Geuze HJ, Slot JW, van der Ley RA, Scheffer RCT (1981) The use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen sections. J Cell Biol 89:653–665

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum LM, Hirshkowitz A, Shoichet I (1959) The activation of trypsinogen by cathepsin B. J Biol Chem 234:2885–2890

    PubMed  CAS  Google Scholar 

  • Hasilik A, Neufeld E (1980) Biosynthesis of lysosomal enzymes in fibroblasts. J Biol Chem 255:4937–4944

    PubMed  CAS  Google Scholar 

  • Hasilik A, Figura K von, Conzelmann E, Nehrkorn H, Sandhoff K (1982) Lysosomal enzyme precursors in human fibroblasts. Eur J Biochem 125:317–321

    Article  PubMed  CAS  Google Scholar 

  • Hummel BC (1959) A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol 37:1393–1399

    PubMed  CAS  Google Scholar 

  • Im B, Kominami E, Grube D, Uchiyama Y (1989) Immunocytochemical localization of cathepsin B and H in human pancreatic endocrine cells and insulinoma cells. Histochemistry 93:111–118

    Article  PubMed  CAS  Google Scholar 

  • Kern HF, Adler G, Scheele G (1986) Structural and biochemical characterization of maximal and supramaximal hormonal stimulation of rat exocrine pancreas. Scand J Gastroenterol 20 [Suppl 112]:20–29

    Google Scholar 

  • Klöppel G, Dreyer T, Willemer S, Kern HF, Adler G (1986) Human acute pancreatitis: its pathogenesis in the light of immuno-cytochemical and ultrastructural findings in acinar cells. Virchows Arch [A] 409:791–803

    Google Scholar 

  • Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1:462–468

    PubMed  CAS  Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lampel M, Kern HF (1977) Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch [A] 373:107–117

    Article  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:263–275

    Google Scholar 

  • McDonald JK, Ellis S (1975) On the substrate specificity of cathepsin B1 and B2, including a new fluorogenic substrate for cathepsin B1. Life Sci 17:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Niederau C, Grendell JH (1988) Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment. J Clin Invest 81:229–236

    PubMed  CAS  Google Scholar 

  • Novikoff AB, Essner E, Goldfischer S, Haus M (1962) Nucleosid phosphatase activities of cytomembranes. In: Harris RJC (ed) The interpretation of ultrastructure, Academic Press, New York, pp 149–192

    Google Scholar 

  • Oliver C (1982) Endocytic pathways at the lateral and basal cell surface of exocrine acinar cells. J Cell Biol 95:154–161

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Anderson RGW (1987) The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature 326:77–79

    Article  PubMed  CAS  Google Scholar 

  • Resau JH, Marzella L, Trump BF, Jones RT (1984) Degradation of zymogen granules by lysosomes in cultured pancreatic explants. Am J Pathol 115:139–150

    PubMed  CAS  Google Scholar 

  • Rinderknecht H, Renner IG, Koyama HH (1979) Lysosomal enzymes in pure pancreatic juice from normal healthy volunteers and chronic alcoholics. Dig Dis Sci 24:180–186

    Article  PubMed  CAS  Google Scholar 

  • Saito I, Hashimoto S, Saluja A, Steer ML, Meldolesi J (1987) Intracellular transport of pancreatic zymogens during caerulein supramaximal stimulation. Am J Physiol 253:G517-G525

    PubMed  CAS  Google Scholar 

  • Saluja A, Saito J, Saluja M, Houlikan MJ, Powers RE, Meldolesi J, Steer M (1985) In vivo rat pancreatic acinar cell function during supramaximal stimulation with caerulein. Am J Physiol 249:G702-G710

    PubMed  CAS  Google Scholar 

  • Saluja A, Hashimoto S, Saluja M, Powers RE, Meldolesi J, Steer M (1987) Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol 253:G508-G516

    PubMed  CAS  Google Scholar 

  • Scheele GA, Palade GE, Tartakoff AM (1978) Cell fractionation studies on the guinea pig pancreas. Redistribution of exocrine proteins during tissue homogenization. J Cell Biol 78:111–130

    Article  Google Scholar 

  • Scheele GA, Adler G, Kern HF (1984) Role of lysosomes in the development of acute pancreatitis. In: Gyr KE, Singer MV, Sarles H (eds) Pancreatitis — concepts and classification. Excerpta Medica, Amsterdam New York Oxford, pp 17–23

    Google Scholar 

  • Scheele G, Adler G, Kern HF (1987) Excocytosis occurs at the lateral plasma membrane of the pancreatic acinar cell during supramaximal secretagogue stimulation. Gastroenterology 92:345–353

    PubMed  CAS  Google Scholar 

  • Sloan EP, Crawford DR, Schneider DC (1981) Isolation of plasma membrane from human neutrophils and determination of cytochrome c and quinone content. J Exp Med 153:1316–1328

    Article  PubMed  CAS  Google Scholar 

  • Steer ML, Meldolesi J, Figarella C (1984) Pancreatitis. The role of lysosomes. Dig Dis Sci 29:934–938

    Article  PubMed  CAS  Google Scholar 

  • Steer ML, Meldolesi J (1987) The cell biology of experimental pancreatitis. N Engl J Med 316:144–150

    Article  PubMed  CAS  Google Scholar 

  • Talalay P, Fishman WH, Huggins C (1946) Chromogenic substrates II. Phenolphtalein glucuronic acid as substrate for the assay of glucuronidase activity. J Biol Chem 166:757–772

    CAS  PubMed  Google Scholar 

  • Tartakoff A, Jamieson JE (1974) Fractionation of guinea pig pancreas. Methods Enzymol 31:41–59

    PubMed  CAS  Google Scholar 

  • Towbin H, Gordon J (1984) Immunoblotting and dot immunoblotting — current status and outlook. J Immunol Methods 72:313–340

    Article  PubMed  CAS  Google Scholar 

  • Watanabe O, Baccino M, Steer ML, Meldolesi J (1984) Supramaximal caerulein stimulation and ultrastructure of rat pancreatic cell: early morphological changes during development of experimental pancreatitis. Am B Physiol 246:G457-G467

    CAS  Google Scholar 

  • Willemer S, Klöppel G, Kern HF, Adler G (1989) Immunocytochemical and morphometric analysis of acinar zymogen granules in human acute pancreatitis. Virchows Arch [A] 415:115–123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willemer, S., Bialek, R. & Adler, G. Localization of lysosomal and digestive enzymes in cytoplasmic vacuoles in caerulein-pancreatitis. Histochemistry 94, 161–170 (1990). https://doi.org/10.1007/BF02440183

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02440183

Keywords

Navigation