Human Evolution

, Volume 10, Issue 3, pp 233–242 | Cite as

On stone age human diet

  • G. Grupe


Diet is part of a larger adaptational process. In terms of evolution, effective subsistence adaptation is expected to enhance selectively the inclusive fitness of those individuals who carry them out. Especially with regard to the “neolithic revolution”, the Stone Ages in Central Europe and the Near East were a period of dietary change with a switch from a foraging to a producing subsistence strategy. Several assumptions do exist on dietary behaviour and resulting lifestyle through the Stone Ages, culminating in the suggestion that in the Neolithic, the role of energy as a limiting factor for human populations gave way to other factors like fats and proteins. Research on Stone Age human populations led to informations on very general trends, and the skeletal record is far from being complete. However, considering the available morphological and archaeometric data, there is at present to need to assume continuing tension between population numbers and food ressources. There are no indications that the neolithic subsistence was on the expense of dietary quality. Also, cost/benefit balances in terms of energy should have been met. The conclusion is the invention and introduction of agriculture being a fitness maximizing process in terms of adaptive dietary behaviour in a changing environment.

Key words

palaeodiet morphology achaeometry energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrose, S.H., 1993.Isotopic analysis of paleodiets: Methodological and interpretive considerations. In: M.K. Sandford (ed.). Investigations of Ancient Human Tissues. Chemical Analyses in Anthropology. Gordon & Breach, Langhorne et al. pp 59–130.Google Scholar
  2. Burton, J., & L. Wright, 1995.Non linearity in the relationship between bone Sn/Ca an diet: Paleodietany implications. — American Journal of Physical Anthropology, 96, 237–282.CrossRefGoogle Scholar
  3. Calcagno, J.M. & K.R. Gibson. 1991.Selective compromise: Evolutionary trends and mechanisms in hominid tooth size. In: M.A. Kelley & C.S. Larsen (eds). Advances in Dental Anthropology. Wiley-Liss, New York, pp 59–76.Google Scholar
  4. Casimier, M.J., 1993.Das Brot der frühen Jahre. Die Zwänge der Ernährung und ihr Einfluß auf Kulturrevolution und Kulturwandel. — Archäologische Informationen 16/1, 20–31.Google Scholar
  5. Chisholm, B., D. Nelson & H. Schwaroz 1982.Stable carbon isotope ratios as a measure of marine versus terrestrial proteins in ancient diets. Science 216, 1131–1132.Google Scholar
  6. Demes, B., 1985.Biomechanics of the Primate Skull Base. Advances in Anatomy, Embryology and Cell Biology 94, Springer: Berlin et al.Google Scholar
  7. Forbes, G.B., 1987.Human Body Composition. Growth, Aging, Nutrition, and Activity. Springer, New York et al. pp 196–208.Google Scholar
  8. Fornaciari, G. & F. Mallegni, 1984.Palaeonutritional studies on skeletal remains of ancient populations from the Mediterranean area: An attempt to interpretation. Anthropologischer Anzeiger 45, 361–370.Google Scholar
  9. Frayer, D.W., 1981.Body size, weapon use and natural selection in the European Upper Paleolithic and Mesolithic. American Anthropologist 83, 57–73.CrossRefGoogle Scholar
  10. Gamble, C., 1985.Early man as complex hunter. Nature 316, 485–486.CrossRefGoogle Scholar
  11. Grupe, G., 1985.Ein deduktives Modell für die historische Anthropologie—Beitrag zu einem ökosystemorientierten Interpretationsraster. Zeitschrift für Morphologie und Anthropologie 75, 189–195.Google Scholar
  12. Grupe, G., 1989.Grazilisierung und Ernährung—Ursache oder Wirkung? Homo 40, 58–64.Google Scholar
  13. Grupe, G., 1991.Das Management von Energieflüssen in menschlichen Nahrungsketten.—Saeculum 42, 239–245.Google Scholar
  14. Grupe, G., U. Dreses-Werringloer & F. Parsche, 1993.Initial stages of bone decomposition: Causes and consequences. In: Lambert, J.B. & G. Grupe (eds). Prehistoric Human Bone—Archaeology at the Molecular Level. Springer, Berlin et al. pp 257–274.Google Scholar
  15. Grupe, G., 1994.Modeling collagen diagenesis in ancient bone: Evaluation of validity criteria for stable isotope analysis. Paper presented at the 4th Advanced Seminar on Paleodiet, Banff/Alberta. Manuscript in preparation.Google Scholar
  16. Grupe, G. & H.-H. Krüger, 1990.Feeding ecology of the stone and pine marten revealed by element analysis of their skeletons. The Science of the Total Environment 90, 227–240.CrossRefGoogle Scholar
  17. Kislev, M.E. & O. Bar-Yosef, 1988.The legumes: The earliest domesticated plants in the Near East? —Current Anthropology 29, 175–179.CrossRefGoogle Scholar
  18. Lambert, J.B. & G. Grupe (eds), 1993.Prehistoric Human Bone—Archaeology at the Molecular Level. Springer, Berlin et al.Google Scholar
  19. Lubell, D., M. Jackes, H. Schwarcz, M. Knyf & C. Meiklejohn, 1994.The Mesolithic-Neolithic transition in Portugal: Isotopic and dental evidence of diet.—Journal of Archaeological Science 21, 201–216.CrossRefGoogle Scholar
  20. Malina, R.M. & C. Bouchard, 1991.Growth, Maturation, and Physical Activity. Human Kinetics Books, Champaign/Illinois. Chapter 21: Energy and nutritional requirements. pp 353 ff.Google Scholar
  21. Meiklejohn, C., C. Schentag, A. Venema & P. Key, 1984.Socioeconomic change and patterns of pathology and variation in the Mesolithic and Neolithic of Western Europe: Some suggestions.—In: Cohen, M.N. & G.J. Armelagos (eds.). Paleopathology at the Origins of Agriculture. Academic Press, Orlando et al. pp 75–100.Google Scholar
  22. Menk, R., 1977.Le néolithisation: impact de l'innovation culturelle sur la biologie et la dynamique des populations.—Archives Suisses d'Anthropologie Gén. 41, 31–36.Google Scholar
  23. van der Merwe, N., 1982.Carbon isotopes, photosynthesis, and archaeology.—American Scientist 70, 596–606.Google Scholar
  24. Molleson, T., K. Jones & S. Jones, 1993.Dietary change and the effects of food preparation on microwear patterns in the Late Neolithic of Abu Hureyra, northern Syria.—Journal of Human Evolution 24, 455–468.CrossRefGoogle Scholar
  25. Newesely, H., 1993.Abrasion as an intrinsic factor in palaeodiet.—In: J.B. Lambert & G. Grupe (eds). Prehistoric Human Bone—Archaeology at the Molecular Level. Springer, Berlin et al. pp 293–308.Google Scholar
  26. Price, T.D., 1991.The Mesolithic of Northern Europe.—Annual Reviews in Anthropology 20, 211–233.CrossRefGoogle Scholar
  27. Roosevelt, A., 1987.The evolution of human subsistence.—In: M. Harris & E.B. Ross (eds). Food and Evolution. Toward a Theory of Human Food Habits. Temple University Press, Philadelphia. pp 565–578.Google Scholar
  28. Ross, E.B., 1987.An overview of trends in dietary variation from hunter-gatherer to modern capitalist societies.—In: M. Harris & E.B. Ross (eds.) Food and Evolution. Toward a Theory of Human Food Habits. Temple University Press, Philadelphia. pp 7–55.Google Scholar
  29. Ruff, C., 1987.Sexual dimorphism in human lower limb bone structure: Relationship to subsistence strategy and sexual division of labor.—Journal of Human Evolution, 16, 391–416.CrossRefGoogle Scholar
  30. Schoeninger, M.J., 1981.The agricultural “revolution”: its effect on human diet in prehistoric Iran and Israel.—Paléorient 7, 73–91.Google Scholar
  31. Schoeninger, M.J., 1982.Diet and the evolution of modern human form in the Middle East.—American Journal of Anthropology 58, 37–52.CrossRefGoogle Scholar
  32. Spencer, M.A. & B. Demes, 1993.Biomechanical analysis of masticatory system configuration in Neandertals and Inuits.—American Journal of Physical Anthropology 91, 1–20.CrossRefGoogle Scholar
  33. Tieszen, L.L., 1991.Natural variations in the carbon isotope values of plants: Implications for archaeology, ecology and paleoecology. Journal of Archaeological Science 18, 227–248.CrossRefGoogle Scholar

Copyright information

© International Institute for the Study of Man 1995

Authors and Affiliations

  • G. Grupe
    • 1
  1. 1.Institut für Anthropologie und HumangenetikMünchenFRG

Personalised recommendations