Skip to main content
Log in

Computational efficiency and approximate inertial manifolds for a Bénard convection system

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

A computational comparison between classical Galerkin and approximate inertial manifold (AIM) methods is performed for the case of two-dimensional natural convection in a saturated porous material. For prediction of Hopf and torus bifurcations far from convection onset, the improvements of the AIM method over the classical one are small or negligible. Two reasons are given for the lack of distinct improvement. First, the small boundary layer length scale is the source of the instabilities, so it cannot be modeled as a “slave” to the larger scales, as the AIM attempts to do. Second, estimates based on the Gevrey class regularity of solutions to the governing equations show that the classical and AIM methods may be virtually equivalent. It is argued that these two reasons are physical and mathematical reflections of one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Armbruster, J. Guckenheimer, and P. Holmes, Kuramoto-Sivashinsky dynamics on the center-unstable manifold,SIAM J. Appl. Math. 49(3) (1989) 676–691.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. L. Beck, Convection in a box of porous material saturated with fluid,Phys. Fluids 15(8) (1972) 1377–1383.

    Article  Google Scholar 

  3. J. Carr,Applications of Centre Manifold Theory (New York: Springer, 1981).

    Google Scholar 

  4. P. Constantin, C. Foias, B. Nicolaenko, and R. Temam,Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations (New York: Springer, 1988).

    Google Scholar 

  5. P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Spectral barriers and inertial manifolds for dissipative partial differential equations,J. Dynamics Diff. Eqs. 1 (1989) 45–73.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. H. Curry, J. R. Herring, J. Loncaric, and S. A. Orszag, Order and disorder in two- and three-dimensional Bénard convection,J. Fluid Mech. 147 (1984) 1–38.

    Article  MATH  Google Scholar 

  7. C. Devulder, M. Marion, and E. S. Titi, On the rate of convergence of nonlinear Galerkin methods,Math. Comp. (1993) (to appear).

  8. E. J. Doedel, AUTO: a program for the automatic bifurcation analysis of autonomous systems,Congressus Numerantum 30 (1981) 265–284 (Proceedings of the 10th Manitoba Conference on Numerical Mathematics and Computation, University of Manitoba, Winnepeg, Canada, 1980).

    MATH  MathSciNet  Google Scholar 

  9. A. Doelman and E. S. Titi, The exponential decay of modes in the Ginzburg-Landau equation,Proceedings of the NATO Advanced Research Workshop: Asymptotic-Induced Numerical Methods for Partial Differential Equations, Critical Parameters, and Domain Decomposition, eds. M. Garbey and H. G. Kaper, Beaune, France, May 1992, Kluwer in the NATO ASI Series.

  10. P. Fabrie, Solutions fortes et comportement asymptotique pour un modèle de convection naturelle en milieux poreaux,Acta Applicandae Mathematicae 7 (1986) 49–77.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Fabrie, Attracteurs pour deux modèles de convection naturelle en milieux poreaux,C. R. Acad. Sci. Paris 311 I (1990) 407–410.

    MATH  MathSciNet  Google Scholar 

  12. C. Foias, O. Manley, and R. Temam, Attractors for Bénard problems: existence and physical bounds on their fractal dimension,Nonlinear Analysis, Theory, Methods and Applications 11(8) (1987) 939–967.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Foias, O. Manley, and R. Temam, Modelling of the interaction of small and large eddies in two dimensional turbulence,Math. Modelling and Numer. Anal. 22(1) (1988) 93–114.

    MATH  MathSciNet  Google Scholar 

  14. C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation of inertial manifolds,Phys. Lett. A 131(8) (1988) 433–436.

    Article  MathSciNet  Google Scholar 

  15. C. Foias, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension,J. Math. Pures Appl. 67 (1988) 197–226.

    MATH  MathSciNet  Google Scholar 

  16. C. Foias, G. R. Sell, and R. Temam, Inertial manifolds for nonlinear evolutionary equations,J. Diff. Eqs. 73 (1988) 309–353.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Foias, G. R. Sell, and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations,J. Dynamics Diff. Eqs. 1 (1989) 199–244.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations,J. Functional Anal. 87 (1989) 359–369.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,Nonlinearity 4 (1991) 135–153.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Frick and U. Müller, Oscillatory Hele-Shaw convection,J. Fluid Mech. 126 (1983) 521–532.

    Article  MATH  Google Scholar 

  21. I. Goldhirsch, R. Pelz, and S. A. Orszag, Numerical simulation of thermal convection in a two-dimensional box,J. Fluid Mech. 199 (1989) 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. D. Graham and P. H. Steen, Strongly interacting traveling waves and quasiperiodic dynamics in porous medium convection,Physica D 54 (1992) 331–350.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Haken,Advanced Synergetics (Berlin: Springer, 1983).

    Google Scholar 

  24. Ju. S. Il'Yashinko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation,J. Dynamics Diff. Eq. (to appear).

  25. F. Jauberteau, C. Rosier, and R. Temam, A nonlinear Galerkin method for the Navier-Stokes equations,Comp. Meths. Appl. Mech. Engr. 80 (1990) 245–260.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,Physica D 44 (1990) 38–60.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation,J. Dynamics Diff. Eqs. 3 (1990) 179–197.

    Article  MathSciNet  Google Scholar 

  28. D. A. Jones and E. S. Titi, A remark on quasi-stationary approximate inertial manifolds for the Navier-Stokes equations, Preprint # 920408, Department of Mathematics, University of California, Irvine; also inSIAM J. Math. Anal. (to appear).

  29. T. B. Lennie, D. P. McKenzie, D. R. Moore, and N. O. Weiss, The breakdown of steady convection,J. Fluid Mech. 188 (1988) 47–85.

    Article  MathSciNet  Google Scholar 

  30. X. Liu, Gevrey class regularity and approximate inertial manifolds for the Kuramoto-Sivashinsky equations,Physica D 50 (1991) 135–151.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Marion and R. Temam, Nonlinear Galerkin methods,SIAM J. Numer. Anal. 26(6) (1989) 1139–1157.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Metzener and S. H. Davis, An annulus model for time-space transitions in Bénard convection,Physica D 36 (1989) 235–258.

    Article  MATH  MathSciNet  Google Scholar 

  33. D. S. Riley and K. H. Winters, Modal exchange mechanisms in Lapwood convection,J. Fluid Mech. 204 (1989) 325–358.

    Article  MATH  MathSciNet  Google Scholar 

  34. L. A. Segel and M. Slemrod, The quasi-steady assumption: a case study in perturbation,SIAM Review 31(3) (1989) 446–477.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. H. Steen, Pattern selection for finite-amplitude convection states in boxes of porous media,J. Fluid Mech. 136 (1983) 219–241.

    Article  Google Scholar 

  36. P. H. Steen, Container geometry and the transition to unsteady Bénard convection in porous media,Phys. Fluids 29(4) (1986) 925–933.

    Article  MATH  MathSciNet  Google Scholar 

  37. P. H. Steen and C. K. Aidun, Time-periodic convection in porous media: transition mechanism,J. Fluid Mech. 196 (1988) 263–290.

    Article  MATH  Google Scholar 

  38. R. Temam, Inertial manifolds and multigrid methods,SIAM J. Math. Anal. 21(1) (1990) 154–178.

    Article  MATH  MathSciNet  Google Scholar 

  39. R. Temam, Stability analysis of the nonlinear Galerkin method,Math. Comp. 57 (1991), 477–505.

    Article  MATH  MathSciNet  Google Scholar 

  40. E. S. Titi, On approximate inertial manifolds to the Navier-Stokes equations,J. Math. Anal. Appl. 149(2) (1990) 540–557.

    Article  MATH  MathSciNet  Google Scholar 

  41. E. S. Titi, Gevrey class regularity and long time approximations for 3-D convection in porous media (in preparation).

  42. J. A. Yorke and E. D. Yorke, Chaotic Behavior and Fluid Dynamics, inHydrodynamic Instabilities and the Transition to Turbulence, eds. H. L. Swinney and J. P. Gollub (Berlin: Springer, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ioannis Kevrekidis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, M.D., Steen, P.H. & Titi, E.S. Computational efficiency and approximate inertial manifolds for a Bénard convection system. J Nonlinear Sci 3, 153–167 (1993). https://doi.org/10.1007/BF02429862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429862

Key words

Navigation