Skip to main content
Log in

The molecular cloning and expression of a cellobiase gene from anAgrobacterium inEscherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The β-glucosidase from ATCC 21400, anAgrobacterium species, was purified to homogeneity. The protein was cleaved with cyanogen bromide and the peptides were purified by reversed phase FPLC. The partial amino acid sequence for one peptide was determined by automated Edman degradation. The sequence was used to synthesize a mixture of oligodeoxyribonucleotides which was used as a hybridization probe to identify a recombinant DNA clone carrying the gene for β-glucosidase. A single clone was isolated which expressed an enzymatic activity that hydrolyzed several β-glucosides. The enzymatic activity produced by this clone could be adsorbed by rabbit antiserum raised against theAgrobacterium enzyme. The direction of transcription of the β-glucosidase gene was determined by verifying the DNA sequence 3′ to the oligodeoxyribonucleotide probe binding site. After subcloning the gene a high level of expression was obtained in the plasmid vector pUC18 using the lacZ gene promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armentrout RW, Brown RD (1981) Molecular cloning of genes for cellobiose utilization and their expression inEscherichia coli. Appl Environ Microbiol 41:1355–1362

    PubMed  CAS  Google Scholar 

  • Atkinson T, Smith M (1984) In: Oligonucleotide synthesis a practical approach. Gait NJ (ed) IRL Press, Washington

    Google Scholar 

  • Barras F, Chambost JP, Chippaux M (1984) Cellobiose metabolism inErwinia: A genetic study. Mol Gen Genet 197:490–496

    Google Scholar 

  • Crestfield AM, Moore S, Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem 193:622–627

    Google Scholar 

  • Dagert M, Ehrlich SD (1979) Prolonged incubation in calcium chloride improves the competence ofEscherichia coli cells. Gene 6:23–28

    Article  PubMed  CAS  Google Scholar 

  • Day AG, Withers SG (1986) The purification and characterization of a β-glucosidase fromAlcaligenes faecalis. Can J Biochem Cell Biol (in press)

  • Gilkes NR, Kilburn DG, Langsford ML, Miller RC, Jr, Wakarchuk WW, Warren RAJ, Whittle DJ, Wong WKR (1984) Isolation and characterization ofEscherichia coli clones expressing cellulase genes fromCellulomonas fimi. J Gen Microbiol 130:1377–1384

    CAS  Google Scholar 

  • Grunstein M, Wallis J (1979) Colony hybridization. Methods Enzymol 68:379–389

    PubMed  CAS  Google Scholar 

  • Guo Li-He, Wu R (1983) Exonuclease III: Use for DNA sequence analysis and in specific deletions of nucleotides. Methods Enzymol 100:60–97

    PubMed  CAS  Google Scholar 

  • Han YW, Srinivasin VR (1968) Isolation and characterization of a cellulose utilizing bacterium. Appl Microbiol 16:1140–1145

    PubMed  CAS  Google Scholar 

  • Han YW, Srinivasin VR (1969) The purification and characterization of β-glucosidase ofAlcaligenes faecalis. J Bacteriol 100:1355–1363

    PubMed  CAS  Google Scholar 

  • Katz L, Kingsbury DT, Helinski DR (1973) Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein complex. J Bacteriol 114:577–591

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lathe R, Kieny MP, Skory S, Lecocq JP (1984) Linker tailing: Unphosphorylated linker oligonucleotides for joining DNA termini. DNA 3:173–182

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–276

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) In: Molecular cloning. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Miller JH (1972) In: Experiments in molecular genetics. Coldspring Harbor Laboratory, New York

    Google Scholar 

  • Penttila ME, Helena-Nevalainen KM, Raynal A, Knowles JKC (1984) Cloning ofAspergillus niger genes in yeast. Expression of the gene codingAspergillus β-glucosidase. Mol Gen Genet 194:494–499

    Article  CAS  Google Scholar 

  • Raynal A, Guerineau M (1984) Cloning and expression of the structural gene for β-glucosidase ofKluyveromyces fragilis inEscherichia coli andSaccharomyces cerevisiae. Mol Gen Genet 195:108–115

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Takahaski H (1967) Fermentation of C14-labelled cellobiose byCellulomonas fimi. Agri Biol Chem 31:470–474

    Google Scholar 

  • Schimz KL, Broll B, John B (1983) Cellobiose phosphorylase (EC 2.4.1.20) ofCellulomonas: Occurrence, induction and its role in cellobiose metabolism. Arch Microbiol 135:241–249

    Article  Google Scholar 

  • Schleif RF, Wensink PC (1981) In: Practical methods in molecular biology Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shewale JG (1982) β-glucosidase: Its role in cellulase synthesis and hydrolysis of cellulose. Eur J Biochem 14:435–443

    CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  CAS  Google Scholar 

  • Sternberg D, Vijayyakumar P, Reese ET (1977) β-glucosidase: Microbial production and effect on enzymatic hydrolysis of cellulose, Can J Microbiol 23:139–147

    Article  PubMed  CAS  Google Scholar 

  • Wakarchuk WW, Kilburn DG, Miller RC Jr, Warren RAJ (1984) The preliminary characterization of the β-glucosidases ofCellulomonas fimi. J Gen Microbiol 130:1385–1389

    CAS  Google Scholar 

  • Whittle DJ, Kilburn DG, Miller RC Jr, Warren RAJ (1982) Molecular cloning of aCellulomonas fimi cellulase gene inEscherichia coli. Gene 17:139–145

    Article  PubMed  CAS  Google Scholar 

  • Workman WE, Day DF (1982) Purification and properties of β-glucosidase fromAspergillus terrus. Appl Environ Microbiol 44:1289–1295

    PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

  • Zoller MJ, Smith M (1983) Oligo nucleotide directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol 100:468–500

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Böck

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakarchuk, W.W., Kilburn, D.G., Miller, R.C. et al. The molecular cloning and expression of a cellobiase gene from anAgrobacterium inEscherichia coli . Molec. Gen. Genet. 205, 146–152 (1986). https://doi.org/10.1007/BF02428044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428044

Key words

Navigation