Skip to main content
Log in

The stability of a cylindrical elastic membrane of biological tissue and the effect of internal fluid flow

  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

Some stability problems for finitely deformed elastic membranes are considered. The first part treats the stability of a stretched elastic membrane which is orthotropic in its reference state. The stability criteria for a uniformly deformed orthotropic plane sheet under conditions of dead loading are obtained. The potential energy for a uniformly extended and inflated circular cylindrical membrane (the preferred directions being axial and circumferential) with axially symmetric deformations and under constant pressure is found to have the same form as that for an isotropic material. Stability criteria for a long tube are obtained and some numerical results are given through stability diagrams using strain energy functions appropriate for biological tissues. The effect on stability of the flow of an incompressible fluid through the tube is considered next. To model the internal fluid motion, small perturbations superimposed on a state of steady flow with velocity profiles of a slug flow and a Poiseuille flow are assumed, and a one-dimensional analysis is used as a third approach. Equations for the fundamental frequencies of vibration are derived. The fluid motion is found to have a stabilizing or destabilizing influence on the membrane depending on the approach used. The results are compared to Rayleigh’s results for a circular liquid jet and they are found to agree for the slug flow and the Poiseuille flow models.

Übersicht

Es werden einige Stabilitätsprobleme für Membranen mit endlichen Deformationen betrachtet. Im ersten Teil wird die Stabilität einer gedehnten Membran betrachtet, die im Ausgangszustand orthotrop ist. Es werden die Stabilitätsbedingungen für ein gleichförmig deformiertes ebenes Blatt erhalten. Die potentielle Energie für eine gleichförmig gedehnte und aufgeblasene kreiszylindrische Membran mit achsialsymmetrischer Deformation unter konstantem Druck hat dann dieselbe Form wie bei isotropem Material. Es werden Stabilitätskriterien für lange Röhren abgeleitet und einige numerische Ergebnisse für biologische Gewebe mitgeteilt. Als nächstes wird der Einfluß auf die Stabilität der Strömung eines inkompressiblen Fluids durch die Röhre untersucht. Dabei werden kleine Störungen der stationären Strömung überlagert, wobei als Geschwindigkeitsprofil Schleichströmung und Poiseuille-Strömung angenommen werden. Die eindimensionale Analyse wird bis zur dritten Ordnung durchgeführt. Es werden Gleichungen für die Frequenzen der Grundschwingungen abgeleitet. Dabei zeigt sich, daß die Fluidströmung je nach der Art der Näherungen einen stabilisierenden oder auch destabilisierenden Einfluß haben kann. Die Ergebnisse werden mit denen von Rayleigh für einen Fluidstrahl mit kreisförmigem Querschnitt verglichen. Dabei wird Übereinstimmung sowohl für Schleich- wie auch für Poiseuille-Strömung festgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shield, R. T.: On the Stability of Finitely Deformed Elastic Membranes. Part I: Stability of a Uniformly Deformed Plane Membrane. Z. Angew. Math. Phys. 22 (1971) 1016–1028; Part II: Stability of Inflated Cylindrical and Spherical Membranes. Z. Angew. Math. Phys. 23 (1972) 16–34

    Article  Google Scholar 

  2. Ziegler, H.: Linear Elastic Stability. Z. Angew. Math. Phys. 4 (1953) 1–50

    Article  MathSciNet  Google Scholar 

  3. Caughey, T. K.; Shield, R. T.: Instability and the Energy Criterion. Z. Angew. Math. Phys. 19 (1968) 485–492

    Article  Google Scholar 

  4. Shield, R. T.: On the Stability of Linear Continuous Systems. Z. Angew. Math. Phys. 16 (1965) 649–686

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, S. S.: Parallel Flow-Induced Vibrations and Instabilities of Cylindrical Structures. Shock and Vibration Digest 6 (10) (1974) 1–11

    Google Scholar 

  6. Ashley, H.; Haviland, G.: Bending Vibrations of a Pipe Line Containing Flowing Fluid. J. Appl. Mech. 17 (1950) 229–232

    MathSciNet  Google Scholar 

  7. Housner, G. W.: Bending Vibrations of a Pipe Line Containing Flowing Fluid. J. Appl. Mech. 19 (1952) 205–208

    Google Scholar 

  8. Lamb, H.: Hydrodynamics. New York 1945

  9. Fung, Y. C.: Stress-Strain-History Relations of Soft Tissues in Simple Elongation. In: Fung, Y. C.; Perrone, N.; Anliker, M. (ed.): Biomechanics: Its Foundations and Objectives. Englewood Cliffs, New Jersey 1972, Ch. 7, pp. 181–208

    Google Scholar 

  10. Fung, Y. C.: Biorheology of Soft Tissues. Biorheology 10 (1973) 139–155

    Google Scholar 

  11. Fung, Y. C.: Biomechanics. In: Koiter, W. T. (ed.): Theoretical and Applied Mechanics. Amsterdam 1976

  12. Fung, Y. C.: Elasticity of Soft Tissues in Simple Elongation. Amer. J. Physiology 213 (1967) 1532–1544

    Google Scholar 

  13. Corneliussen, A. H.; Shield, R. T.: Finite Deformation of Elastic Membranes with Application to the Stability of an Inflated and Extended Tube. Arch. Rat. Mech. Anal. 7 (1961) 273–304

    Article  MathSciNet  Google Scholar 

  14. Blatz, P. J.; Chu, B. M.; Wayland, H.: On the Mechanical Behavior of Elastic Animal Tissue. Trans. Soc. Rheology 13 (1969) 83–102

    Article  Google Scholar 

  15. Chu, P. F.: Strain Energy Function for Biological Tissues. J. Biomechanics 3 (1970) 547–550

    Article  Google Scholar 

  16. Wong, J. S. K.: The Stability of a Finitely Deformed Cylindrical Orthotropic Elastic Membrane and the Effect of Internal Fluid Flow. Ph. D. Thesis, University of Illinois at Urbana-Champaign, October 1978

    Google Scholar 

  17. Veronda, D. R.; Westmann, R. A.: Mechanical Characterization of Skin-Finite Deformations. J. Biomechanics 3 (1970) 111–124

    Article  Google Scholar 

  18. Patel, D. J.; Vaishnav, R. N.: The Rheology of Large Blood Vessels. In: Bergel, D. H. (ed.): Cardiovascular Fluid Dynamics, Vol. 2. London and New York 1972, Ch. 11, pp. 1–64

  19. Lanir, Y.; Fung, Y. C.: Two-dimensional Mechanical Properties of Rabbit Skin — I. Experimental System. J. Biomechanics 7 (1974) 29–34; II. Experimental Results. J. Biomechanics 7 (1974) 171–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Hans Ziegler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, J.S.K., Shield, R.T. The stability of a cylindrical elastic membrane of biological tissue and the effect of internal fluid flow. Ing. arch 49, 393–412 (1980). https://doi.org/10.1007/BF02426918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02426918

Keywords

Navigation