Annali di Matematica Pura ed Applicata

, Volume 104, Issue 1, pp 187–207 | Cite as

Interpolation and non-commutative integration

  • Jaak Peetre
  • Gunnar Sparr
Article

Summary

We extend the interpolation theory of a previous publication to the case of non-commutative Lp spaces in the sense of Segal. As illustrations we give some simple concrete applications (Fourier transform on unimodular groups, Weyl transform, spinor transform).

Keywords

Concrete Application Interpolation Theory Unimodular Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bergh,On the interpolation of normal linear spaces, a necessary condition, technical report, Lund, 1971.Google Scholar
  2. [2]
    J. Bergh,A generalization of Steffensen's inequality, J. Math. Anal. Appl.,41 (1973), pp. 187–191.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    M. Cotlar, personal communication.Google Scholar
  4. [4]
    A. Erdélyi et al.,Higher transcendental functions, I–III, McGraw-Hill, New York, 1953–1955.Google Scholar
  5. [5]
    J. C. Goh'berg - M. G. Krein,Introduction to the theory of non-selfadjoint operators, Moscow, 1965 (in Russian).Google Scholar
  6. [6]
    R. A. Kunze,L p Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc.,89 (1958), pp. 519–540.CrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Lavine,The Weyl transform. Fourier analysis of operators in L 2 spaces, thesis, M.I.T., 1965.Google Scholar
  8. [8]
    J. Löfström,Besov spaces in the theory of approximation, Ann. Mat. Pura Appl.,75 (1970), pp. 93–184.Google Scholar
  9. [9]
    G. G. Lorentz -T. Shimogaki, Interpolation theorems for the pairs of spaces (Lp, L) and (L1, Lq), Trans. Amer. Math. Soc.,159 (1971), pp. 207–221.CrossRefMathSciNetGoogle Scholar
  10. [10]
    C. Mérucci - Pham The Lai,Caractérisation par interpolation des idéaux de R. Schatten, C. R. Acad. Sci. Paris,274 (1972), pp. 1912–1914.Google Scholar
  11. [11]
    B. S. Mitjagin,An interpolation theorem for modular spaces, Mat. Sbornik,66 (1965), pp. 473–482 (in Russian).MATHMathSciNetGoogle Scholar
  12. [12]
    R. Oloff, Interpolation zwischen den Klassen\(\mathfrak{S}_p \) von Operatoren in Hilberträumen, Math. Nachr.,46 (1970), pp. 209–218.MATHMathSciNetGoogle Scholar
  13. [13]
    V. J. Ovčinnikov,On the s-numbers of measurable operators, Funkcional. Anal. i Priložen.,4, no. 3 (1970), pp. 78–85 (in Russian).Google Scholar
  14. [14]
    J. Peetre,On the connection between the theory of interpolation spaces and approximation theory, Proc. Conf. Constructive Theory of Functions, Akdémiai Kiado, Budapest (1971), pp. 351–363.Google Scholar
  15. [15]
    J. Peetre,Interpolationsräume, Anger (ed.), Elliptische Differenzialgleichungen, bd. I, Akademie Verlag, Berlin (1971), pp. 93–101.Google Scholar
  16. [16]
    J. Peetre,A new approach in interpolation spaces, Studia Math.,34 (1970), pp. 23–42.MATHMathSciNetGoogle Scholar
  17. [17]
    J. Peetre,Banch couples - I:Elementary theory, technical report, Lund, 1971.Google Scholar
  18. [18]
    J. Peetre,The Weyl transform and Laguerre polynomials, Matematiche (Catania), to appear.Google Scholar
  19. [19]
    J. Peetre,Applications de la théorie des espaces d'interpolation dans l'Analyse Harmonique, Ricerche Mat.,15 (1966), pp. 3–36.MATHMathSciNetGoogle Scholar
  20. [20]
    J. Peetre,Non commutative interpolation, Matematiche (Catania),25 (1970), pp. 1–15.MathSciNetGoogle Scholar
  21. [21]
    J. Peetre -G. Sparr,Interpolation of normed Abelian groups, Ann. Mat. Pura Appl.,92 (1972), pp. 217–262.CrossRefMathSciNetGoogle Scholar
  22. [22]
    A. A. Sedaev -E. Semenov,On the possibility of describing interpolation spaces in terms of the K-method of Peetre, Optimizaceja,4 (1971), pp. 98–114 (in Russian).MathSciNetGoogle Scholar
  23. [23]
    E. Segal,A non-commutative extension of abstract integration, Ann. Math.,57 (1953), pp. 401–457.CrossRefMATHGoogle Scholar
  24. [24]
    I. E. Segal,Transformation of operators and symplectic automorphisms over a locally compact group, Mat. Scand.,13 (1963), pp. 31–43.MATHGoogle Scholar
  25. [25]
    I. E. Segal,Symplectic structures and the quantization problem for wave equations, Proc. Conf. on Symplectic Geometry and Mathematical Physics, Rome, jan. 1973, Academic Press (to appear).Google Scholar
  26. [26]
    I. E. Segal, personal communication.Google Scholar
  27. [27]
    E. Stein,Analytic continuation of group representations, Advances in Math.,4 (1970), pp. 172–207.CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    E. Stein,Interpolation of linear operators, Trans. Amer. Math. Soc.,83 (1956), pp. 482–492.CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    W. Stinespring,Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc.,90 (1959), pp. 15–56.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    R. F. Streater,Interpolating norms for orthogonal and spin Lie algebras, Proc. Conf. on Symplectic Geometry and Mathematical Physics, Rome, jan. 1973, Academic Press, (to appear).Google Scholar
  31. [31]
    H. Triebel,Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen, Invent. Math.,4 (1967), pp. 275–293.CrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    A. Zygmund,Trigonometric series, I–II, Cambridge, 1958.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1974

Authors and Affiliations

  • Jaak Peetre
    • 1
  • Gunnar Sparr
    • 1
  1. 1.Lund

Personalised recommendations