Interpolation and Non-Commutative Integration (*).

JAAK PEETRE - GUNNAR SPARR (Lund)

Summary. — We extend the interpolation theory of a previous publication fo the case of non-
commutative L, spaces in the sense of Segal. As illustrations we give some simple concrete
applications {(Fourier transform on unimodular groups, Weyl transform, spinor transform).

0. —~ Introduction.

This is in & way a continuation of an earlier work (PEETRE-SPARR [21]). There
among other things we noticed a close connection between the two cases: 1° interpo-
lation of the usual L, spaces over a measure space and 2° interpolation of the trace
classes &, of compact operators in a Hilbert space (*). There arises the question
whether one cannot treat both cases within one and the same framework. We now
show that this is indeed possible if we use the theory of non-commutative integra-
tion, in particular the theory of non-commutative I, spaces over a (regular) gage
space, as developped by Segal and his students (see SEGAL [23], KUNzE [6], STINESPR-
NG [29]). While writing [21] we simply were not aware that such a theory existed.
Accordingly we now try to fill in this gap. We notice however that in the meantime
there hag appeared also a paper by OVOINNIKOV [13] where somewhat related ideas
can be found.

The plan of the paper reads as follows. There are five Sections. In Section 1 we
briefly review some basic facts about gage spaces. In Seetion 2 we then carry over
the interpolation theory of [21] to the case of non-commutative L, spaces. In Sect-
ion 3 we apply the results of Section 2 to the Fourier (-Segal) transform on unimodular
groups. In doing this we cover anew and improve somewhat on the results of Konze [6].
In Section 4 we likewise treat the Weyl transform and also, more briefly, the spinor
transform. Hereby we generalize some results by LAVINE [7] and STREATER [30].
We remark however that since the gage spaces involved are of the frivial type we
could here have used [21] directly. Finally in Section 5 we treat in a somewhat more
general framework part of the material of Section 2.

Whenever applicable we use the nofation and terminology of [21].

(*) Entrata in Redazione il 6 giugno 1973.

() This parallelism is referred to also in PrrrrE [14], [15], and is probably known to
many authors {ef. notably Mrrsacin {11], Gox’BEre and KreIx [§], TriessL [31], CoTrLAR [3],
and, for a more recent study, Mérvcct and Pram THe Lai [10] as well a8 other works by
the same authors quoted there).
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Since most of the proofs are routine repetition of known arguments, we have
chosen to cut down the details to a minimum, (We do ascertain that all results stated
here are correct.) We hope that nevertheless this compilation might be of some use
to those who might be tempted to apply interpolation in non-commutative situations,
say, in problems of quantum field theory.

We would like to express our gratitude to prof. I. E. SEGAL for most valuable
information pertaining to non-commutative integration, and several stimulating con-
versations.

1. — Basie facts about gage spaces.

Let J€ be a complex Hilbert space and A a ring of bounded operators on J¢, in
the von Neumann sense (i.e. in particular weakly and/or strongly closed in £(3€) = the
ring of all bounded operators in J¢). By a (regular) gage on £ We mean a mapping m:
projections of A— R, such that the following axioms hold:

1)m(P)> 0 if P =0, m(0) = 0.

2) m(UP)=3P,if P,P;=0, 5 (orthogonality).
Ny 8

-4

3) m(UPU*) = m(P) if U= U* (unitarity).
4) every projection in 4 is the |J of m-finite projections.

The triple I'= (X, #, m) is termed (regular) gage space. One can define the
notion of measurable operator on I', and one can extend m to positive such. If T

has the spectral resolution 7T = fl dP(A) then holds the formula
0

m(T) = f Adm(P(3)) .
(1]

If m(T) < oo then T is termed positive integrable. By linearity one can extend m
to general integrable operators, i.e. those which belong to the hull of the positive inte-
grable ones.

The following examples elarify what we are attempting at.

ExampiE 1.1 (the commutative case). — Let M be an ordinary measure space,
i.e. a triplet (X, %, m) where X is a space, % a Boolean ring of sets of X, m a measure
on $B. (Usually one writes abusively X is place of (X, %, m)). Then M can be identi-
fled with the gage space (Ly(M), L(M), m), an element of L, being identified with
the corresponding multiplicative operator.
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EXAMPLE 1.2. — The triple (¥, £(J), tr) is a gage space. Here tr stands for the
ordinary (von Neumann) trace. Note that tr(P) = rank(P) if P is a projection, so
that here m(P) << oo iff rank(P)< oo.

ExampLEe 1.3, ~ One can combine ex. 1.1 and ex. 1.2 (i.e. the trivial cases) as fol-
lows. Let there be given a Hilbert bundle 36 = {}.} over the measure space X,
i.e. for each x € X there is attached a Hilbert space K,. We consider the operator
buncle £(K) = {£(K,)}.cx- We get a gage space I'= (&, £, m) by taking:

[ J6 = sections 7= {f,} of X with ﬁ]fm [2dy < oo,

#& = sections 7= {T,} of £(¥K) with sup |7, < oo,
2EX

m(T)= |t (T,)dm .

X

ExAmpPLE 1.4. — Let G be a locally compact unimodular group provided with
a Haar measure dg, and let L be the left regular representation (defined by L,f(-) =
=f(g~*+)). Then we obtain a gage space (the dual of @) @ = I'= (%, £, m) by
taking:

[ Je = L,(@),
# = the ring generated by the operators {L },q,
m(P) = |f|* if P is a projection of the form P = L,

| (with Lyp = % ¢ = [L,fp(g) dg).

(The unimodularity is need for the verification of axiom 20!)

EXAMPLE 1.5. — In certain cases & can be presented in a more explicit equivalent
form. This is the case when ¢ is compact (and so automatically unimodular). Then
we take @ to be the space of all equivalence classes of irreducible unitary representa-
tions of G provided with the discrete meagsure m which with a given irreducible uni-
tary representation U®, corresponding to a point z e X, in a (finite dimensional)
Hilbert space U? associates the mass dim U=

We return to the case of a general gage space I = (1€, £, m).

In what follows we shall usually put ourselves on a purely formal level, leaving
out all technicalities related to measurability.

Let 0 < p < 0. We introduce the spaces I, = L,(I") (non-commutative L, spa-
ees) of measurable operators T' by the condition

1Tz, = 1Ty = m(ITP) < oo
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where |T| denotes a positive measurable operator equivalent (*) to T (e.g. |T)=
= +/TT* will do). Note that if T is positive then

oa

1T}, = ( [ 2 am(2m))*.

(]

If 1<p<oo then [T is & norm but if 0 <p <1 only a quasi-norm. One can
show that I, is complete, i.e. a Banach space in the first case, a quasi-Banach space
space in the second case. We also introduce the spaces L, = L,(I") by putting

Ly=18, |T];,= |T]3, with 5 = min(1, p) ().

If 1<p < oo nothing changes. However if 0<<p<1l we get a normed Abelian
group in the sense of [21] (or, what is usually called a p-normed vector space (p-
norm = p-homogeneous norm)). Finally we introduce the spaces L,and L =1L,
by passing to the limit p — 0 or p — oo respectively. Or, spelled out, L, is the
space corresponding to the (0-homogeneous) norm

1Tz, = m(supp. T)

Where supp. T (support of 7) is the smallest projection Pe 4 such that PT = T,
and L, = I, is the space corresponding to the (i-homogeneous) norm

17050 = 1715, = 1T lgwe) = sup| Tflse/ Iflse »
i.e. the regtriction to s of the norm in L(XK).

ExAMPLE 1.6. — In the case of ex. 1.1 we obtain the usual (commutative) L, spaces.

~

In the case of ex. 1.2 we obtain the trace classes &,= S,(3) (as well as &,).

2. — Interpolation of noncommutative L, spaces.

As we have already told we use throughout the notation and terminology of [21].
For the following discussion see in particular [21], Sub-Section 6.1 and Sub-Sect-
ion 7.1.

2.1. — Let again I'= (J, £, m) be a gage space. We congider first the normed
Abelian couple {ﬁg, Em}. ‘We shall use the notation

T*(t) = E(t7 T {Eo’ Zoo}) = inof ”T_'S“Zoo

i8U%, <t

(%) Two operators §; and 8, in a Hilbert space J are equivalent if §, = U'8,U" with
U’ and U” unitary.
(*) The brackets !! are used eonformally with the notation of [21].
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(decreasing rearrangement of 7). Note that

(T4 To)* (4 t)<T (1) + Trt) .
‘We define
Lm(P) = qu = (-Zﬁa Em)mz:E with « = 1/? ’

non-commutative Lorentz (%) space), i.e. we have T ¢ L,, iff
b

<«

/e
(2.1) HT“LFGZ (‘[(tu’J _T*(t))q %t) < oo,

]

Consider the gpecial case p = ¢. Then (2.1) becomes
( f (T*()) dt)”” < oo
0

or since t~>T*(t) is the inverse of the function Ar>m(P(1)) where A+~ P(1) gives
the spectral resolution of the operator |T|, simply

[ am(P(y) < oo

0

In other words we have

Using [21], th. 5.10 (equivalence of E- and K-spaces) follows now

THEOREM 2.1, —~ Let 6 = p/(p + 1), r = 0¢. Then holds

o~

(Lo, Eoo)g(/el]{ = L, .
In particular holds if p = 0q
(—Z'os Em)g}’% = Lga .o

Using [21], th. 5.11 (reiteration theorem for K-spaces) follows

THEOREM 2.2. — Let 1/p = ((1 —0)/p,+ 0/p,) Then holds

(me Lplrl)ﬂa:K = szq .

%) G. G. LorrNtz, not H. A. LorexTzZ!
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In particular holds

{pr Lfm)%:}f =1L,. 4
Thus th. 2.1 tells us that all the spaces L,, and in particular the L, can be recon-
structed from the couple {fjo, L.}, Th. 2.2 is useful if we want to obtain interpola-
tion theorems. We state the typical

CoroLLARY 2.1. (analogue of the M. Riesz interpolation theorem). — Let I" and H
be two gage spaces. Consider the quasi-Banach couples 4 = {L,(I"), L, (I')} and
B={L,(H), L, (H)} It G: A B is a bounded linear mapping then holds G: L,(I") —
— L,(H), provided

i 1—6 6 1 1—6 6
g Y - 0<0<1).
P Do +p1, q 9o +Ql ( )

For the norms involved we have a convexity inequality of the type
(2.2) |Bl<el 85" 1B,

with |G| = [ Clew, .z, ote., and ¢>1 depending on 6. More generally (if po # p,,
qo7 ¢1) holds G: L,(I")— L,(H), with the same assumptions about the parameters
and we have an analogous inequality.

Proor. — It suffices to invoke [21], th. 5.2. [J

The fact that ¢ in inequality (2.2) depends on 6 is however a serious defect, at
least for certain types of applications. We therefore must give s more careful ana-
lysis, which takes much more into account the special features of non-commutative
integration.

2.2. — We start with the Banach couple {L,, L.}. Then holds the following for-
mula

3
(2.3) K(t, T; {Ly, L}) = f T*(s)ds ,
1]

the special case of which in the case of ex. 1.1 and ex. 1.2 is well-known (see e.g. [14]
for references); the general case has also independently been proven in [13]. It is
convenient to give the proof in & somewhat more general framework so we post-
pone it to Section 5. From (2.3) follows easily:

THEOREM 2.3, — We have
1

(2.4) (Ly, L)ogx= Ly, 6= 1_;} .
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In particular holds

1
(Lh Lm)ﬁﬂ;xz ' 3 8 = —E) .
PRrROOF. — We rewrite (2.3) as
1
da
(2.5) I < K¢, T) :fﬁtT*(Zt) -
0

With @ = @, as in [21], def. 5.3, we obtain from (2.5) if 1<g< oo

O[1T*(1)] < BIE(1, T)]< f DL T* (1)) d% = f i ‘i?-‘ D[1T*(1)] = % DIT*(1)] .
8 o

(This is essentially an implicite use of Hardy’s inequality!) But

IO = 1Tl PLEG TN = [T,z

00)94§1{

and the proof of (2.4) is complete in this special case. If 0 < g<< 1 we have first
to replace the integral in (2.5) by a discrete sum and then use the fact that @7, with
g = min(1, g), satisfies the triangle inequality (see [21], (3.4)). O

We note that th. 2.3 is essentially a special case of th. 2.2. So we get also a new
proof of a special case of cor. 2.1 (p,= ¢,=1, p, = ¢, = o), with additional infor-
mation on the constant ¢ in (2.2), at least if 1<g< co. However (2.3) can also be
used to prove more directly the following «exact» result.

THEOREM 2.4. — Let 1 < p <<co. Then L, is with equality of norms a K-gpace,
in particular an interpolation space, for the Banach couple {L,, L_}, i.e. there exists
a functional @ such that we have

(2.6) 17z, = PLEG, T)] .

Proor. — By Holder’s inequality we have

[==]

|7],,= sup f 1) 1(0) dt
JEF

0
where F' denotes the set of positive funetions f subject to the condition

w

1 1
p’d fesed 1 .t:h - — == 1 .
f(f(t)) t wi 7 —]—p,

Q

13 — dnnali di Matematica
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But since T'*(t) is decreasing, we can in this special situation replace F by the sub-
set F' of decreasing functions. Therefore, upon integrating by parts and using (2.3)
we obtain

1], = sup— f K(t, Tydf(1),
fer!
/]

which clearly is a proof of (2.6). O
From th. 2.4 follows an « exact » interpolation result corresponding to a special
case of cor. 2.1 (p, = ¢, =1, p, = ¢, = o0), the precise formulation of which we omit.

REMARK 2.1. ~ The same argument as in the proof of th. 2.4 can be adapted so
as to characterize the most general interpolation space for the couple {L, L.} (the
analogue of the results of MrryaGIN [11] and CoTLAR [3]; of. MiRUCCI and PHAM
THE LA1[10] where the case {&,, &,} is worked out).

2.3. — The considerations of Sub-Section 2.2 can in part be extended to the case
of the Banach couple {L,, L.} (see LORENTZ and SHIMOGAKI[9], BERGH [1], [2]).
In particular holds the following partial analogue of (2.3):

? 2

2.7) ( f (T*(s))” ds)””<K(t, T {L,, L}) <2~ ( f (T*(s))" ds)”" .

0 0

The constant 2'~*? cannot be improved.

2.4, ~ Finally we consider briefly the case of the (quasi-) Banach couple {L, , L, }
with 0 <p,, p; < co. It is difficult to apraise K(t, T';{L,, L,}) directly. However
for the modified couple {L?*, L¥*} this is easy. Indeed we have

fe]

(2.8) K(t, T3 (L2, I85) = [ K(t, T* (5); {629, €24}) ds
0

(cf. PEETRE [16], PEETRE-SPARR [21], OLOFF [12]). From (2.8) follows at once

THEOREM 2.5. - We have with proportionality of norms

(I’[;:aly I’E’;])nl:K = LEJ] ’ p= (1 —77) Dot NP1 - O

From th. 2.5 again follows the « exact » version of the first half of cor. 2.1, i.e.
we can afford ¢ =1 in the convexity inequality (2.2).
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3. — Applications to the Fourier transform on unimodular groups.

We place ourselves in the situation of ex. 1.4. More precisely, G is locally compact
unimodular group with Haar measure dg, and G = I'= (¥, £, m) (the dual of @)
is the gage space defined by

¥ = Lz(G)7

# = the ring generated by the left translation operators {L,},.q,

m(f) = |f]? if P is a projection of the form P = L.
We define the Fourier (- Segal) transform & on G formally by assigning to a func-
tion f on G the convolution operator L,. In the case of a compact group, with the
identification of G made in ex. 1.5, we can identify L, with a function fon &, in such
a way that L,¢ = fp, so that this definition (due to Segal) agrees, in this case,

with the usual definition of the Fourier (-Peter-Weyl) transform. Directly from the
definition we obtain

I gz = flze (analogue of Parseval’s relation).

In other words holds

(3.1) F: Ly(@) — Ly(@) .
On the other hand, the well-known Minkowsky or Young inequality

If %@lz0< {240 9]0

can be rewritten as

I]Lf|le(a)< If ”L,(a) .
Thus holds also

(3.2) F:L(G)—> L ().

Now we interpolate between (3.1) and (3.2). Application of the «exact» version
of cor. 2.1, which is lawful in view of th. 2.5, yields, with the constant 1,

~ 1 1
(3.3) F: L,(@) - L, (G), 1—) -[—1—)—,:1, 1<pg2
(analogue of the Hausdorff-Young theorem).

This was first established by KuNzE [6] using complex variables (4 la Thorin). We
have thus obtained a real variable proof of his result. But invoking also non-commu-
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tative Lorentz spaces we can prove @ in a sense sharper result. Indeed, application
of the last part of cor. 2.1 yields

A 1
(3.4) F: L(6) = Lo @) to=1  1<p<?

M b

{analogue of the Paley theorem).

The connection between (3.3) and (3.4) is imbodied in the general relation

REMARK 3.1. — For the discussion of (3.3) and (3.4) in their classical Fourier series
context, i.e. the group ¢ == T (torus), see ZvcMUND [32], chap. XII. From this
clagsical case follows that (3.3) and (3.4) are about the best possible for general uni-
modular groups. However for semi-simple Lie groups drastically sharper results
can be obtained, as has been demonstrated by Kunze and Stein in a series of works;
we refer to the survey arfiele of STEIN [27]. Here the basic tool, from the interpola-
tion point of view, is the celebrated interpolation theorem of STEIN [28] (also discussed
e.g. in [32], chap. XII). This is again & typical complex variable argument. It is
tempting to ask how much one can achieve with the real methods only. Quite gene-
rally, the relafion of Stein’s theorem to the real methods ought to be clarified.

4. — Applications to the Weyl transform and the spinor transform.

As we already told in the Introduction, we could in this Section have used [21]
directly, the gage spaces involved being of the trivial type (i.e. either of the type
of ex. 1.1 or of ex. 1.2).

4.1. - We consider R, with the general point © = (#y, ..., #,), and R?, with
the general point { == {(a, d) = (8y, ..., @n, by, ..., b,), provided with the usual Haar
measures do = da,, ..., dv, and d{ = dadb = da,, ..., da,dby, ..., db,. Via the natu-
ral mapping R*»— RoxXR* we may identify L,R>) with L,(R") @ LyR") (with
convenient interpretation of . If f € L(R*) its Weyl transform W(f) is a Hilbert-
Schmidt operator in L,(R»*), W(f) € &,. The formal definition reads

W= s [0,
Rﬂﬂ

where

W) () = exp ¢ (b-w -+ %—Iz) plw+a) if pel,(R?)
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with the scalar produets

7 (2
b= Y bz, a-b:'%‘a,-bj.
=

=1

1t is well-known (SEeAL [23]; of. PEETRE [18] where further references can be found)
that W is a unitary mapping from LR} into &,:

W: LR») - S, .
Trivially (by Minkowsky or Young) we have
(4.2 W: LR > &, .

Interpolating between (4.1) and (4.2) in the same way as in Section 3 we thus obtfain
analogues of Hausdorff-Young and Paley for W (ef. (3.3) and (3.4)). We leave it to
the reader to contemplate over the partieulars. Instead we turn to analogues of the
classical theorems of Bernstein and Szasz (cf. ZyeMunD [32]).

We need some preliminaries related to W. Leb py= ¢, , €L, (R") be the nor-
malized Hermite functions in R», They constitute an orthonormal basis in L,(R?).
In L,(R*") we have correspondingly the basis ¢ of Laguerre type funections {cf. [18]
if uw=w). They are formally given by [T, = W(pw) where the operators (projec-
tions) 11, are defined by

Hygy= 0weou (O = Kronecker-delta).

(More explicitely, there holds the relation ¢u = (W(—{) (]f’ulgﬁv)). We further infro-
duce the « number operator» N by imposing

Noy=v|gp  where |v|=w» - ...4v,.

I F= Wf then NF = WKf. (This we also may express as a transmufation rela-
tion NW = WK.) Here K = K is the partial differential operator

2 0
2 et (s een § e
Koy= ( 4+ C +5 gi( " 3a, abj) %),

with

2

= 3 + = Laplacian in Rz,
20 8?)2

=1 08; =1

u

fP=00= Za +262

IR
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If we note that NII,, = |u|ll,, we see that

(43) K(l)q)v,u = Inulq)w 9

i.e. the ¢,, are eigenfunctions of K.

REMARK 4.1. — Using instead of left multiplication NF right multiplication FN
we find similarly
(4'4) K(r)(pvu = lvl(pm ?
with

1 1 72 0 0
K(r)—:é (—A —5—152—“52 (ba' “@“aigb—j)—") .

J=1

Thus upon adding (4.3) and (4.4) we see that

J(pv,u: (Lu’] + lvl)q)vu
with
J=K(l)—l— 'K(T)= ——A + %Cz_n .

We draw the conclusion that the ¢,, are linear combinations of functions ¢, @ ¢,
with |u'|+ |#'| = |u|+ [»|. This yields another interesting connection between Her-
mite and Laguerre functions (cf. [18]), at least a special case of which is known, indeed
due to Feldheim (cf. ErRDELYI [4], vol. II, p. 195 [32]). The rightist theory will
not be pursued in what follows.

After these preparations, we introduce the normed Abelian group of functions A
such that

fla<t it = 2 a,9,,

luj+1<t

i.e. f is a linear combination of eigenfunctions of K -- I belonging to eigenva-
lues <.
It fed, with |f],<?, and F = WY, it is clear that

4.5) rank (F)< > 1<0ir,
jal+1t

with a suitable €. In other words for any f €/ holds

Iflg,<Clfl4,
and we have

(4.6) W: A 5 &, .
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We are now ready to interpolate between the previous (4.1) and the new (4.6).
Using [21], th. 5.2, we get

(4.7) W: (A™, Ly)ggx — (&, Souir

We have to explicitize the interpolation spaces appearing in (4.7) We consider the
right hand side of (4.7) first. Upon using [21], th. 5.8 and th 5.3 along with the defi-
nition of the Lorentz trace class &,, (cf. Sub-Section 2.1) we readily obtain

T

. 1
(4.8) (S, G3)opix= @L‘i’ with E) =

D -

Next we turn to the left hand side of (4.7). If f has the expansion f= Z“m%u we
may write

E(t’ 15 {A[ma LZ}) = (I I+2 y lo”v,u‘z)il‘r
pl+1>pn

If follows that

[=-]

dtliir
(4.9) ”f“(/ﬂ"]-ﬂz)m;ﬁ - [ft“f (Iul+1z>t1/niab”"lz)”2 7] '

Now we specialize, taking r =2. Then we may interchange f and Y in (4.9).
We get

(ul+0"

2= [z ot | md;]* -
0
= O[2 (lu] + D*la,, T = C|(K + I)*f| = CO|f|ls»  wWith s =an,
where we have introduced
W= W= D((K+1)*) (analogue of Sobolev spaces).
Using finally [21], th. 5.10, we find

1
1+a’

r=~0q, provided r=2.

(4.10) (A", Lo)gpz= (W)  with s=om, 0=

Upon inserting (4.8) and (4.10) in (4.7) we get

. 1 1 s
(4.11) W: We—©&,, with Pt
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Since W o> W™ if s,<s, it follows from (4.11) that

1
(4.12) W: Wer @, with 11
P 2 n

Let us further introduce
BT = By = (Ly, Wi))erx With s = o, 0> s (analogue of Besov space)

(Using PEETRE [20] we can put B* in a rather explicite form). Then another inter-
polation helps us (apply [21], th. 5.8) to improve (4.11) to

. 1 1 s
(4.13) W: B>, wit 2—7—52%,

This formula (4.13) is the desired analogue of Bernstein-Szasz. As noted in the Intro-
duetion our result improves in several respects upon the one obtained by LAvINE [7].

REMARK 4.2. — The above method is of course also applicable in the classical
case of the Fourier transform & on R* (cf. PEETRE [19]) or T» (torus) (ef. LOFs-
TROM [8]). Generally speaking it can be applied for a variety of « transforms» as
soon as one has defined an analogue of the Laplacian. (In the present case it was the
operator K). With the congiderations of Section 3 in mind we ask in parficular:
What is the Laplacian on a general unimodular group G (or, dually, on &)?

4.2. — We now sketch an extension of the depelopments of SubSection 4.1 to the
case of an infinite number of dimensions, which might be of interest from the point
of quantum field theory. This case has previously also been considered by SEGAL [26].
The step # — oo cannot be performed without making several adjustments of the
original setup of Subsection 4.1. In the first place Haar measures have to be replaced
by (normalized) Gauss measures. Thus in place of L,(R") and L,(R*®) we should
take L,(J', ') and I,(J€, ») where X is a given complex Hilbert space and J' any
one of its real forms, and o and y’ the corresponding (normalized) Gauss measures.
An expression for the anlogue of the Weyl transform can now readily be written
down (cf. SEGAL [25]). It is however much more convenient to work with the for-
malism of the (boson) Fock space F = F, built on X, i.e. formally we have

F=3 RORO..0K.

=0 » times

(In an analogous fashion we could also have treated the case of fermions, i.e. F,
has to be replaced by

Fi=> JeAJe/\.../\Je).
=0

¥ times
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If ¢, @s, ... is any orthonormal basis in J& we obtain an orthonormal basis ¢, =
= @y = @, O @y, ©... in &, which will play the role of the Hermite functions.
The Weyl transform ean then easily be expressed in terms of the creation and annihila-
tion operators, as defined by their action on ¢,. The number operator N can also be
defined as before. However the fault is that the basic estimate (4.5) will break down;
it is not true that F will have finite rank if f € 4. Therefore we use instead of N the
« Hamiltonian operator » H formally defined by

Hopy= (A + A+ ) @y

where A; (= the energy of the j-th particle state) is a given sequence of positive num-
bers with 4;— oo as j - oco. Let us put

w(t) = > 1.

Ayt Ayt

Then obviously w(t) < co for all ¢, and we have, replacing (4.5)
(4.14) rank(F)<w(t) .

It is now clear how the argument of Sub-Section 4.1 can be carried through. How-
ever the final result will not be at all so clean as previously, unless we know a priori
that w(t) can be estimated in terms of a power of ¢, a not very natural assumption.
E.g. corresponding to (4.11) we have

(4.15) W: D((o(K + I))* -, with %—% =a.

4.3. — Next we turn to the application to the spinor transforn. Let us start by
briefly reviewing the necessary back-ground (cf. STREATER [30] and the works quoted
there for more details). Let J€ be a complex Hilbert space and pick up any of its real
forms, say, J&'. By s0(J'), we denote the Lie algebra of skew-symmetric operators T
of finite rank in ¥', and by spin(¥’), the Lie algebra generated by all commutators
[hyy hy] = hyhy—Rohy, Ry, hye X', considered as elements of the Clifford algebra
CLff(J') over J'. The spinor transform §: so(¥'),—> spin(d'), is then the canonical
isomorphism defined by

8(T)=[h, k] it Th=[[h, k], k].

Next we have to define so and spin analogues of the Lorentz spaces. We define
50(J€),, as the closure of so(¥X'), in &,, = S,,(K), and so(¥’), as the closure of
s0(¥'), in &, = &,(K); elearly 80(XK'),, = so(J'),. Using the (unique central state o
in the complex Clifford algebra Cliff(JC) and the Gel'fand-Naimark-Segal construe-
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tion with this w, we can represent Cliff(¥), and thus CLff(JX'), as operators in some
complex Hilbert space . We ean now gimilarly define spin(#'),, and spin (J€'),
by using &, = G,,(F) and &S, = S,(I). In particular holds thus

1B spimgey, = @((R*RPZ) it hespin(X),.
We can extend S to so(¥'),, by continuity. In particular holds (STREATER [30])

(4.16) S:g0(¥'),—spin(¥K'), (analogue of Parseval’s relation)

Using (4.16), and the analogue of Minkowsky-Young, along with complex interpola-
tion, he [30] proves the analogue of the Hausdorff-Young theorem. It is clear that
we can recapture this by our methods, and now also prove the analogue of the Paley
theorem, exactly as in Section 3 in the case of a unimodular group (see (3.3) and (3.4)).
However we shall again restrict us to a sort of analogue of Bernstein-Szasz, as in
Sub-Section 4.1 and 4.2 for the Weyl transform.

To this end, let T €s80(¥'), and let {4 2i4,};.,, with 4,>1,>...>1,> 0, be the
non-zero eigenvalues of 7. Then there exists a set of unit elements {¢;}3*, in ¥’ such
that

Tey s =ik Gorya s Teopyo=— TA sy

If follows that

8(T) = Z A €apmy Boe -
k=1

A gimple calculation [30] shows that 8(T) has the 2~ eigenvalues 44, -4, ... + 4,.
Hence we have

(417) H S(T) “sDin(J@’).,<2n .
It is now natural to introduce the Abelian group A corresponding to the functional

“T”Z — 2% rank supp 7' .

(Cf. the definition of A in Sub-Section 4.1; supp 7 is defined in Section 1.) This is
not & norm (nor a quasi-norm) in the striet sense of [21]. Now (4.17) can be rewritten as

(4.18) S: A — spin(Je’), .

By interpolation ([21], th. 5.2, which result still can be adapted to our present situa-
tion) we get from (4.18) and (4.16)

(4-11) 8: (/T, SO("}GI)Z)W:K_> (Spin(Je/)07 spin(Jel)Z)ﬂa:K .
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It is easy to see (cf. (4.8))

(4.20) (spin (3')o, spin (3'),)pqx C spin (K),,  if

(Since spin(J¥’),, is a retract (cf. [17]) of &,, we have indeed = in place of C in (4.20)).
Further, since

1T oz, = (3 2(24)%)F = 243 42)*

we have
B2, T; {4, s0(J€'),}) = 2*( ) /lz)*
2k
50
. dt 1r . 1
(421) ” T”(Z. BO(J{:))ar;E: 232 ( ft“' ( Zkz>t}.,26)r’2 7) with o= 6 —1 y = Bq .

0

Finally, we introduce the « Sobolev class » W* corresponding to the functional
1Tl = (Z@" )"} ;

this is not a norm nor is W* a vector space. Using (4.20) and (4.21), with r= 2,
we get from (4.19), exactly as in Sub-Section 4.1,

(4.22) §: W*—spin(¥'),, if a=1/p—1/2,

which is our desired result and should be compared to (4.11). In the same way,
corresponding to (4.12), we can prove

(4.23) 8: We—>gpin (¥'), if ac>%——%.

If one wants to one can also define a « Besov gpace » B*® and prove a result of the
type (4.13). Because of the essentially non-linar character, the analogy with Bern-
stein-Szacz is of course on a very superficial level.

5. — A class of Banach couples.

In this Section we want to treat the considerations of Sub-Section 2.2 in a some-
what more general framework. In particular we will prove the basic formula (2.3).
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Let us recall the notion of pseudoretract (PERTRE [17]). Let 4 and B be any
two Banach couples. We say that 4 is a (bl-) pseudoretract of B if 10 there exists a
bounded (b) (not necessary linear!) map «: 4 — B, which by definition means that

(5.1) K(t,xa; By<K(t,a; A)  for all acX(A)

and 2° there exists for any ac2X(A4) a linear (I} map f,: B—~ A, which implies
that

(6.2) K(t, 8.b; A)y<K(i, b; B) for all be2(B),

such that there holds

(5.3) a = fx(a)) .

(It B, does not depend on a, f,=f;, we may write (5.3) simply as o« = id, and

we say that 4 is a (bl-) retract of B.) If we combine (5.1) and (5.2), with b= aa,
we obtain

(5.4) K(t,a; Ay = K(t,za; B) for all acX(A)
We now show that formula (2.3) may be conceived as a special cagse of (5.4), with

a convenient choice of B. Denote by Z(w) the space of Radon measures & on [0, oo)
corresponding to the norm

€] 200 = [10(s)1dE6)] 5
Q¢

w = w(s) is & given positive weight function. We choose B = E = {&(s), F(1)}. It
is known that (cf. e.g. [2])

(5.5) K(t, & {5(s), 51)}) = [min(s, 1]a&(s)]
0

Let A= {L,, L,} = {L,(I"), L,(I"}} where I" is any gage space. How ghall we de-
fine o and f,? We observe that, since T'*(f) is a decreasing function, we may write

Tr(t) = f d&(s)
11
with a positive & Accordingly we define o(T) = ¢, i.e.

(=]

T*(3) = f da(s, T) .
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13
It is now easy to establish condition 1°. Let us take for granted that 7' fT*(s) ds
0

is & norm, for fixed ¢, which may be established in one way or other. If T =T, + T,
we therefore get

i 3
[r*e)as< [TE @ as + [T6)ds< 7] + 41T -
0 0 4]

This proves the inequality > in (2.3), which again by (5.5) is equivalent to (5.1),
for a simple integration by parts shows that

t (o]
f T*(s) ds — f min(s, ¢) d(T, 8) .
0 0

We proceed to the definition of f,. For simplicity let us assume that T is positive.
Consider the corresponding spectral resolution 7 = _[2. dP(). If ¢ —pu(, T') is the
[

inverse of the function ¢ — T*(f) we may write this as

(5.6) T = [TH®dg(t)
0

with @(t) = P(u(t, T')). This leads us to define

Bal8) = fm ﬁl&(s) ()
0t

Clearly p; is linear; boundedness and thus (5.2) follows from

[Bzlz<lélzws 1Brlz,<|élew

where we have used

(Bo(E))*=¢& it £ positive;

we need establish (5.7) for & positive only. Finally (5.3) is a restatement of (5.6),
and we have verified condition 2° entirely. Thus in sum we have proven

ProrosITION 5.1. — For any gage space I', {L,, L.} is a pseudoretract of E. [

In particular (2.3) has been proven. There arises the obvious question whether
the other developments of Sub-Section 2.2 can be treated on the same general level.
(As another, more general instance to which our trentment generalizes we mention
the case of the Lorentz couple {L,,, L,,}. If p,=1, p, = co we get back {Ll, L.}).
In this direction we can prove the analogue of th. 2.4
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PROPOSITION 5.2. — Let A = {4,, 4,} be any pseudoretract of &, with « and §.
having the same meaning as above. Consider the space A corresponding to the no.m

o0 o0

lats = ( [([dats, @)y as),  1<p<oo.

Then A is a K-space for A.
Proor. — Obvious adaptation of the proof of th. 2.4, []

REMARK 5.1, — SEDAEV and SEMENOV [22] recently proved the analogue of the
Mitjagin-Cotlar result (cf. remark 2.1) for the couple 5 (which incidently one of us
conjectured already years ago). It is now natural fo ask whether an analogous result
holds for any pseudoretract of &.

REMARK 5.2, — It appears likewise likely that a similar abstract treatment of the
theory indicated in Sub-Section 2.3 is possible.
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