
Interpolation and Non-Commutative Integration (*). 

JAAK PEET]~E - GUNNAR SPARR (Land) 

S u m m a r y .  - We extend the interpolation theory o/ a previous publication to the case o/ non- 
commutative L~ spaces in  the sense o/ Segal. As  illustrations we give some simple concrete 
applications (~ourier trans/orm on unimodular groups, Weyl transform, spinor trans/orm). 

O. - I n t r o d u c t i o n .  

This is in a way  a cont inuat ion of an earlier work (PEETRE-SPA~a [21]). There 

among  other  things we noticed a close connect ion between the two cases: 1 ° interpo- 
la t ion of the  usual  L~ spaces over  a measure  spa~e and  2 ° interpolat ion of the  tr~ce 
classes ®~ of compac t  operators  in a Hi lber t  space (1). There  arises the  question 
whether  one cannot  t r ea t  bo th  cases within one and  the  same f ramework.  We now 
show t h a t  this is indeed possible if we use the theory  of non -commuta t ive  integra-  
tion, in par t icular  the  theory  of non -commuta t ive  L~ spaces over  a (regular) gage 
space,  as developped b y  Segal and  his s tudents  (see SEGAL [23]~ KVSZE [6], STIr'ESPY- 

InG [29]). While wri t ing [21] we s imply were not  aware  t h a t  such a theory  existed. 
Accordingly we now t r y  to  fill in this gap. We notice however  t ha t  in the  mean t ime  

there  has appeared  also a paper  b y  O v 6 i ~ I K o v  [13] where somewhat  related ideas 
can be found.  

The p]an  of the  pape r  reads as follows. There  are five Sections. I n  Section 1 we 
briefly review some basic facts abou t  gage spaces. I n  Section 2 we then  car ry  over 
the  in terpola t ion theory  of [21] to the  case of non -commuta t i ve  L~ spaces. I n  Sect- 
ion 3 we app ly  the results of Section 2 to the  Fourier  (-Segal) t r ans form on nnimodular  
groups. I n  doing this we cover  anew and  improve  somewhat  on the  results of KU~zE [6]. 
I n  Section 4 we likewise t r ea t  the  Weyt  t r ans fo rm and also, more  briefly, the  spinor 
t ransform.  H e r e b y  we generalize some results b y  LAWSE [7] and  STREATE~ [30]. 

We r e m a r k  however  t h a t  since the  gage spaces involved are of the  t r ivial  t ype  we 
could here have  used [21] directly. F inal ly  in Section 5 we t r ea t  in a somewhat  more  
general  f r amework  p a r t  of the  mater ia l  of Section 2. 

Wheneve r  appl icable we use the  nota t ion  and  te rminology  of [21]. 

(*) Entrata in Redazione il 6 giugno 1973. 
(1) This parallelism is referred to also in P ~ T ~  [14], [15], and is probably known to 

many authors (cf. notably ~IITJAGIN [11], GOH'B~I~G and K~EIN [5], TRI]~B]~L [3I], COTLAR [3], 
and, for a more recent study, M~t~vcci and PHA~I T ~  LAI [10] as well as other works by 
the same authors quoted there). 
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Since most  of the proofs are rout ine repeti t ion of known arguments,  we have 
chosen to cut down the details to a minimum. (We do ascertain tha t  all results stated 
here are correct.) We hope tha t  nevertheless this compilation might  be of some use 
to those who might  be tempted  to apply  interpolat ion in non-commutat ive  situations, 
say, in problems of quantum field theory.  

We would like to express our grat i tude to prof. I. E. SEaAL for most  valuable 
informat ion per ta ining to non-commutat ive  integration, and several st imulating con- 
versations. 

1. - Bas ic  facts about  gage  spaces.  

Let  JC be a complex t I i lber t  space and A a ring of bounded operators on J~, in 
the yon Neumann  sense (i.e. in part icular  weakly and/or  strongly closed in £(~) -~ the 
ring of all bounded operators in J~). By  a (regular) gage on A we mean a mapping m: 
projections of A--> R+ such tha t  the following axioms hold: 

1 ) r e ( P ) >  0 if P # 0 ,  m(0) = 0. 

2) m(k3  ) = if 0, (orthogonaUty). 

3) m(UPU -~) ~ m(P) if U-~= U* (unitari ty).  

~) every  projection in A is the m of m-finite projections. 

The triple F =  (~,  A, m) is te rmed (regular) gage space. One can define the 
notion of measurable operator  on F, and one can extend m to positive such. I f  T 

co 

has the spectral  resolution T ~- fA dP(2) then  holds the formula 
0 

oo 

= 

0 

I f  re(T)< ~ then  T is te rmed positive integrable. By  l ineari ty one can extend m 
to general integrable operators,  i.e. those which belong to the hull of the positive inte- 
grable ones. 

The following examples clarify what  we are a t tempt ing  at. 

~ExA31:PLE 1.1 (the commuta t ive  case). - Let  M be an ordinary measure space, 
i.e. a t r iplet  (X, 33, m) where X is a space, 33 a Boolean ring of sets of X, m a measure 
on 33. (Usually one writes abusively X is place of (X, 33, m)). Then M can be identi- 
fied with the gage space (L2(M)~ ]~(M):  m), an element of L~ being identified with 
the corresponding mttltiplicative operator.  
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]~XA~[PLE 1.2. -- The tr iple (Jg, ~ : ( , . ~ ) ,  t r )  is a gage space. Here  t r  s tands for the  
ord inary  (yon ~ e u m a n n )  trace.  Note  t h a t  t r (P)  ---- r ank(P)  if P is a projection,  so 
t h a t  here re(P)< oc iff r a n k ( P ) <  oo. 

Ex~II~LS 1.3. - One can combine ex. 1.1 and ex. 1.2 (i.e. the t r ivial  cases) as fol- 
lows. Le t  there  be  given a Hi lber t  bundle  Jg ~ {Jg~} over the measure  space X~ 
i.e. for each x E X there  is a t t ached  a Hi lber t  space Jg~. We consider the operator  
buncle £(Jg) ~ {~(511~)}~x. We get a gage space / '  ~- (J~, A, m) b y  tak ing:  

[ J~ = sections ] z  {f~} of 5g with fl]]~][2dx < oo, 

A = sections 2 ' =  {:T~} of g(N~) with sup IIT~[I < co ,  
~ X  

ExAmPLE 1.4. - Let  G be a locally compac t  un imodular  group prov ided  with  
a t t a a r  measure  dg, and let J5 be  the  left regular  representa t ion  (defined b y  Lg]( . )  
= ](g-~.)). Then we obta in  a gage space (the dual  of G) ~- - - -_P= (;E, A, m) b y  

tak ing:  

[ :E = L~(G), 

I A---- the  r ing genera ted  b y  the  operators  {Zg}g~a , 

l m(P)---- H/H 2 if P is a project ion of the fo rm P = Lt, 

(with = I * v  = f giv(g)dg). 

(The un imodula r i ty  is need for the  verif ication of ax iom 2oX) 

]~XAm)LL 1.5. - Tn cer tain cases G can be presented in a more explicit  equivalent  
form. This is the  case when G is compact  (and so au tomat ica l ly  unimodular) .  Then 

we t ake  ~ to  be the space of all equivalence classes of irreducible un i t a ry  representa-  
tions of G provided  with  the  discrete measure  m which with  a given irreducible uni- 
t a r y  representa t ion  U ~, corresponding to  a point  x E X,  in a (finite dimensional) 

Hi lber t  space ~U ~ associates the  mass  dim ~U ~. 
We r e t u r n  to the  case of a general  gage space 1 '  = (Jg, A, m). 
I n  wha t  follows we shall usually pu t  ourselves on a pure ly  formM lev@ leaving 

out all technicMities re la ted to measurabi l i ty .  
Le t  0 < p < oo. We  introduce the  spaces Z~ = Z~(F) (non-commuta t ive  Z~ spa- 

ces) of measurable  operators  T b y  the condit ion 
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where IT] denotes a positive measurable operator equivalent  (~) to T (e.g. IT]- -  
----V/T-T ~ will do). ~ o t e  tha t  if T is positive then  

c ~  

0 

I f  l ~ < p ~ o o  then  ]ITIIL~ is a norm bu t  if 0 ~ p ~ l  only a quasi-norm. One can 
show tha t  Z~ is complete, i.e. a Banach space in the first case, a quasi-Banach space 
space in the  second ease. We also introduce the spaces L~ = L~(F) b y  put t ing  

L~-~ L[~, ]lTi]g~ = HT]t~ with ~ ~-- min(1, p)(8). 

I f  1 ~<p < oo nothing changes. However  if 0 ~ p < 1 we get a normed Abelian 
group in the sense of [21] (or, what  is usually called a p-normed vector  space (p- 
n o r m - - p - h o m o g e n e o u s  norm)).  Final ly  we introduce the spaces L0 and L~ = Z~ 
by  passing to the limit p--> 0 or p - ~  oo respectively. Or, spelled out, L0 is the 

space co~Tesponding to the  (0-homogeneous) norm 

lIT ]It0 ---- m(supp. T) 

Where  supp. T (support of T) is the smallest projection P ~ A such tha t  P T  = T, 
and L~----Z~ is the space corresponding to the (1-homogeneous) norm 

llrilz  = IITIt   = tt1'll (: ) = suptlTtt/ /illlt , 

i.e. the  restriction to A of the norm in g(JC). 

E x ~ z ~  1.6. - I n  the case of ex. 1.1 we obtain the  usual (commutative) L~ spaces. 

In  the case of ex. 1.2 we obtain the t race classes ®~ : ®~(Jg) (as well as ~ ) .  

2. - Interpolation o f  noneommuta t ive  ~ spaces. 

As we have already told we use throughout  the notat ion an4 terminology of [21]. 
For  the  following discussion see in par t icular  [21], Sub-Section 6.1 and Sub-Sect- 

ion 7.1. 

2.1. - Le t  again F ~ (JC, A, m) be a gage space. We consider first the normed 

Abetian couple {Lo,/T,~). We shall use the  nota t ion 

T*(t) = T; {£0, = IjT- blz  

(3) Two operators 8t and 23 in a Hilbert space ;)~ are equivalent if S 2 ~ U'S1U" with 
U' and U" unitary. 

(8) The brackets [] are used eonformally with the notation of [21]. 



J .  PEETRE - G.  SPARR: Interpolation and non-commutative integration 191 

(decreasing rear rangement  of T). Note tha t  

(~ + T,)* (t: + t~) < T: (~,) + ~': (t~). 

We define 

L~,(/~) = Z~  = (Lo, L~)~,:E with ~ = 1 / p ,  

(non-commutat ive  Lorentz  (4) space), i.e. we have T ~ L~  iff 

¢o 

0 

Consider the special case p = q. Then (2.1) becomes 

Ix l  

0 

or since ~ ~-~ T*  (t) is the inverse of the  function 2 ~ m(P(A)) where A ~ P ( t )  gives 
the  spectral  resolution of the  operator  ITt, simply 

c o  

0 

I n  other  words we have 

JD~q = ~ if p -- q . 

Using [21], th.  5.10 (equivalence of E-  and K-spaces) follows now 

T~EORE~ 2.1. -- Le t  0 -- p/(p ~- 1)~ r = Oq. Then holds 

~ 0  ~ " u o ~ j O q ; K  

I n  part icular  holds if p = Oq 

r r ¢i/oI = Z ~  [] 
iJ o ~ -I-J c~ J Oq : K 

Using [21], th.  5.11 (reiteration theorem for K-spaces) follows 

T ~ : E o ~  2.2. - Le t  1/p = ( ( i -  O)/po + O/p~) Then holds 

(a) G. G. LOR~NTZ, no$ H. A. LOR~NTZ! 
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In  part icular  holds 

Thus th.  2.] tells us tha t  all the  spaces JL~ and in part icular  the  L~ can be recon- 
s t ructed f rom the  couple {L0, JS~}. Th. 2.2 is n s e f ~  if we want  to obtain interpola- 
t ion theorems. We state the typical.  

COI~OLLAI~Y 2.1. (analogue of the ~[. tCiesz interpolat ion theorem). - L e t / ~  and H 
be two gage spaces. Consider the  quasi-Banach couples A = {L~o(F), L~(F)} and 
B = {Lq.(H)~ JLq~(H)}. I f  ~;: A ~ B is ~ bounded linear mapping then  holds ~ :  Z~(F) -~ 
-~ .Lq(H), provided 

1 1 - - 0  0 1 1 - - 0  0 
p ~0 + ~ '  q q0 + ~  (0<0<1) .  

For  the norms involved we have a convexi ty  inequal i ty  of the type  

(2.2) II ~11 < ell ~ l l f  ° II ~;11~, 

with I]~1; : II~11=(~(~),~(~)) etc.~ and c~>1 depending on 0. More generally (if Po ¢ P 1 ,  
qo~= qJ holds ~ :  Z~(F)-~Zqr(H)~ with the same assumptions about  the parameters  
and we have an analogous inequMity. 

P~ooF. - I t  suffices to invoke [21]~ th.  5.2. [] 

The fact tha t  c in inequal i ty  (2.2) depends on 0 is however a serious defec% at  
least for certain types of applications. We therefore must  give a more careful ana- 
lysis, which takes much more into account  the  special features of non-commuta t ive  
integration. 

2.2. - We star t  with the  Banach couple (/~1~ .5~} .  Then holds the following for- 

m ~ a  
t 

(2.3) K(t, T; {~, Z~}) = f~*(8) e8, 
0 

the  special ease of which in the  case of ex. 1.1 and ex. 1.2 is well-known (see e.g. [14] 
for references); the general case has also independent ly  been proven in [13]. I t  is 
convenient  to give the proof in a somewhat more general f ramework so we post- 
pone it  to Section 5. F rom (2.3) follows easily: 

THEO~E~ 2.3. -- We have 

(2 .4)  ( .51,/J.)o~= ]5~ 
1 

0:i---. 
P 
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In  part icular  holds 

(~, ~)0~;~= ~ ,  

~)I~oo~. - We rewrite (2.3) as 

(2.5) 

1 
0 = 1 - - - .  

P 

1 

tT*(t)<K(t ,  T) = ~tT*(2t) -f t .  
0 

With  ~ = ~0q as in [21]~ def. 5.3, we obtain f rom (2.5) if l < q <  c~ 

1 1 

~[tT*(t)] < qS[K(t, T)] < qS[AtT*(At)]-~ 

o 0 

j 2. q)[tT*(t)] : ~ q~[tT*(t)]. 

(This is essentially ~n implicite use of ttardy~s inequality!) But  

l T ~ qS[T*(t)] = lI i I~ ,  q)[K(t, T)] = lIT I(L,.L~)O~ 

and the proof of (2.4) is complete in this special case. I f  0 ~ q ~ 1 we have first 
to  replace the integral  in (2.5) by  a discrete sam and then  use the  fact tha~ ~b~, with 
q =  rain(l ,  q), sa¢isfies ~he tr iangle inequal i ty  (see [21], (5.4)). [~ 

We note  tha t  th.  2.3 is essentially a special ease of th. 2.2. So we get also a new 
proof of a special case of cor. 2.]  (2o = q0 = ] ,  P~ -= q~ = co), with additional infor- 
mat ion  on the  constant  c in (2.2), at leas~ if l < q <  ~ .  t towever  (2.3) can also be 
used to prove more direct ly the following (( exact  )) result. 

THEO~E~ 2.4. -- Le t  I ~ p ~ co. Then L~ is with equali ty of norms a K-space, 
in p a r t i c ~ a r  an interpolat ion space, for the Banach  couple (L~, ~ } ,  i.e. there exists 
a functional  ~ such tha t  we have 

(2.6) I1T]I~ = qS[K(t, T ) ] .  

P~ooF. - B y  ttSlder~s inequali ty we have 

c o  

II ~ II~ = s ~  f T*(t) f(t) dt 
0 

where /~  denotes the set of positive functions ] subject  to the condition 

I(](t)) ~'dt = 1 with 1 ~- 1 " - - 1  o 

1 3  - Annce l i  d i  M a t e m a t i c a  



19~ g. I~nETI~E - G. SPhinx: Interpolation and non-commutative integration 

But  since T*(t) is decreasing, we can in this special si tuation rep lace /~  by  the sub- 
set F '  of decreasing functions. Therefore, upon integrating by  parts  and using (2.3) 
we obtain 

co 

[I sup (t, T)a/(t),, 
]~pv 

0 

which clearly is a proof of (2.6). [] 

F rom th. 2.4 follows an (( exact  ~) interpolat ion result  corresponding to a special 
case of cot. 2.1 (Po --~ qo = 1, p~ =- q~ = co), the precise formulat ion of which we omit. 

RE~ARK 2.1. -- The same argument  as in the  proof of th. 2.4 can be adapted so 
as to characterize the most  general interpolat ion space for the couple {Z~, Z~} (the 
analogue of the results of MI~A~II~ [11] and COTLAI¢ [3]; cf. M#,I~UOCI and PHA~ 
THE L)~ [10] where the case { ~  ~ }  is worked out).  

2.3. - The considerations of Sub-Section 2.2 can in par t  be extended to the case 
of the Banach couple {L~, Z~} (see L o l ~ T z  and Sm~oGhIcr [9], B]~GH [1], [2]). 
In  part icular  holds the following par t ia l  analogue of (2.3): 

(2.7) 
t~ ) t ~  

( f  (~*(8))lJ~8)l/i)~K(t, ~ {.L~,~co})~21-1/l~(f (~*(8))1)d8) 1]lJ . 
o o 

The constant  2 ~-~/v cannot  be improved.  

2.4. - Final ly we consider briefly the case of the (quasi-) Banach couple {Z~o, Lv~ } 
with 0 < Po, P l <  ~ .  I t  is difficult to upraise K(t, T; {~o, L~.}) directly. However  
for the modified couple ~Z t~°] E~] ( ~. ,Z~ } this is easy. Indeed  we have 

(2.s) 
c o  

K(t, E '1 f r*  (C K(t, 
0 

(of. PEETI~E [16], PEETI~E-SPAI~I~ [21], OLOFF [12]). F ro m  (2.8) follows at once 

T~EO~E~ 2.5. - We have with proport ional i ty  of norms 

F rom th. 2.5 again follows the (( exact  )> version of the first half of cot. 2.1, i.e. 
we can afford c = 1 in the convexi ty  inequal i ty  (2.2). 
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3.  - Appl icat ions  to the Four ier  t rans form on un imodular  groups.  

We place ourselves in the situation of ex. 1.4. more precisely, G is locally compact 
unimodular group with t taar  measure rig, and ~ = F----(J~, A, m) (the dual of G) 
is the gage space defined by 

;E = I~((/), 

A----the ring generated by the left translation operators {Ig}g~a , 

m(/) = ll]II if P is a projection of the form P = Z/. 

We define the Fourier (- Segal) transform ~- on G formally by assigning to a func- 
tion ] on G the convolution operator I~. In the case of a compact group, with the 
identification of ~ made in ex. 1.5, we can identify Lr with a function ] o n  ~, in such 
a way that  L,~v =jz93 , so that  this definition (due to Segal) agrees, in this case, 
with the usual definition of the Fourier (-Peter-Weyl) transform. Directly from the 
definition we obtain 

[tZ~IIL~(~) -- ][][]~,(a) (analogue of Parseval's relation). 

In  other words holds 

(3.1) ~ :  ~ ( a )  -+ ~ ( G ) .  

On the other hand, the well-known ~inkowsky or Young inequality 

can be rewritten as 

Thus holds also 

(3.2) ~-: ZI(G) -+ I~(G).  

:Now we interpolate between (3.1) and (3.2). Application of the <~ exact ~> version 
of cor. 2.1, which is lawful in view of th. 2.5, yields, with the constant 1, 

1 1 
(3.3) ~:/~r(G) -->L~,(G), ~ ~ - ~  = 1,  1 < p < 2  

(analogue of the Hausdorff-Young theorem). 

This was first established by Kv~zE [6] using complex variables (~ la Thorin). We 
have thus obtained a real variable proof of his result. But invoking also non-commu- 
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tative Lorentz spaces we can prove a in a sense sharper result. Indeed~ application 
of the last part of cot. 2.1 yields 

1 1 
(3.4) ~ :  Z~(G)-+Z~,~(G), ~ + ~  = 17 l < p < 2  

(analogue of the Paley theorem). 

The connection between (3.3) and (3A) is imbodied in the general relation 

RE~AI~K 3.1. -- For the discussion of (3.3) and (3.4) in their classical Fourier series 
context~ i.e. the group G -  T (torus)~ see ZYG~-c~])[32], chap. XII .  From this 
classical case follows that  (3.3) and (3.4) are about the best possible for general uni- 
modular groups. However for semi-simple Lie groups drastically sharper results 
can be obtained, as has been demonstrated by Kunze and Stein in a series of works; 
we refer to the survey article of STEt~ [27]. Here the basic tool, from the interpola- 
tion point of view, is the celebrated interpolation theorem of S~EI~ [28] (also discussed 
e.g. in [32], chap. XII) .  This is again a typical complex variable argument. I t  is 
tempting to ask how much one can achieve with the real methods only. Quite gene- 
rally~ the relation of Stein~s theorem to the real methods ought to be clarified. 

4. - Applications to the Weyl transform and the spinor transform. 

As we ah'eady told in the Introduction, we could in this Section have used [21] 
directly, the gage spaces involved being of the trivial type (i.e. either of the type 
of ex. 1.1 or of ex. 1.2). 

4.1. - We consider R~ with the general point x = (x l ,  . . . ,  x , ) ,  and R 2~, with 
the general point ~ --~ (a, b) ----- (al~ ...~ a , ,  bl,  ...7 b~)~ provided with the usual Haar 
measures d x  = d x l ,  . . . ,  dx.~ a n d  dE = da db = da~ ~ ... ~ da~ db~ ~ ... ~ db~. Via the natu- 
ral mapping R2~-~R~xR ~ we may identify Z~(R 2~) with Z2(R ~) Q L~(R '~) (with 
convenient interpretation of Q i). If  ] ~ Z~(R ~) its Weyl transform ql)(]) is a Hilbert- 
Schmidt operator in Z~(R~), ~3(]) e ®2. The formal definition reads 

where 

~(]) _ 1 f 

'PO(E)~(x) --= e x p  i ( b . x  -t- ~ - )  cf(x ~- a) if ~ ~ L 2 ( R  ~) 
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with the scalar products 

f ~- b_~x~ , a . b  = w;,~. a~b¢ . b . x  
i=1 ~ 1  

I t  is well-known (SEGAL [23]; cf. lPEE~:]~E [18] where further references can be found) 
t h a t  %0 is ~ uni ta ry  mapping from Z d R  ~) into ®~: 

Trivially (by Minkowsky or Young) we have 

(4.2) ~ti): L~(R~-) -> ®~. 

Interpolat ing between (4.1) and (4.2) in the same way as in Section 3 we thus obtain 
analogues of t tausdorff-Young and PMey for qD (el. (3.3) and (3.4)). We leave it to 
the reader to contemplate over the particulars. Instead we turn  to analogues of the 
classical theorems of Bernstein and Szasz (ef. ZYG~u~])[32]). 

We need some preliminaries related to ~l). Let  ?v = %~_.~= ~ L2(R ") be the nor- 
malized Hermite  functions in R ~. They constitute an orthonormal basis in Z2(R' 9. 
In  L~(R 2~) we have correspondingly the basis ~ of Laguerre type functions (cf. [18] 
if # = v). They are formally given by //vu = q£(%~) where the operators (projec- 
tions) H~a are defined by 

f L ~ % - =  6v~,% (6w = Kronecker.delta). 

(~[ore explicitely, there holds the relation 9~ = (~(--~')~',I9~))" We further intro- 
% 

duce the (~ number  operator )) iV by  imposing 

~ =  [vI9~ where [v [=v~+. . .+v~ .  

I f  E = "O)f then  N F  = °d)K]. (This we atso may  express as a t ransmutat ion rela- 
t ion IVY&)= 2DK.) Here K = K(o is the p~rti~l differential operator 

with 

1(__/_ I + 152 + i (b,!-  ) 

¢.¢= Zd+ Zb . 
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I f  we note tha t  ~YH,~ = l~l/I~, we see tha t  

(4.3) K(~)~,, = 1#1%~,, 

i.e. the  %~ are eigenfunctions of K(0. 

I~EM~mK 4.1. - Using instead of left  multiplication ~y/v right mul t ip l ica t ion/~Z r 
we find similarly 

(4.4) K(,)%z = 1~,[9~,,I,, 

with 1( 
K(,) = ~ - -  + ~  - 3 .  b , ~ - a ~ - n  . 

Thus upon adding (4.3) and (4.4) we see tha t  

with 

J%. = (I~1 + I~'l) %. 

J = K(o -{- K(,) : - -  A ~- ~ ¢" - -  n .  

We draw the conclusion tha t  the %~ are linear combinations of functions ?.. @ ~,. 

with ]#'1-[-I v'] = I#l-{- Iv[. This yields another  interesting connection between Her-  
mite and Laguerre  functions (cf. [18]), at  least a special case of which is known, indeed 
due to Feldheim (ef. EI~])ALSI [4], vol. I I ,  p. 195 [32]). The rightist  theory  will 
not  be pursued in what  follows. 

After  these preparations,  we introduce the normed Abelian group of functions A 
such thai; 

17ll~<t i~ f =  ~ a.w(p.,, 
lwl+i~t 

i.e. ] is a linear combination of eigenfunctions of K(0- [ - I  belonging to eigenva- 
lues < t .  

I f  l e A ,  with II]llA<t, and F = ~? ,  it  is clear tha t  

(4.5) rank(_V)< ~ l < C t , ,  
1#I ÷ l < t  

with a suitable C. In  other  words for any  ] c A  holds 

II111~o< ~11t11~, 
and we have  

(4.6) q~: A E"~-+ ~o. 
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We are now ready to interpolate between the previous (4.1) and the new (4.6). 
Using [21], th. 5.21 we get 

(4.7) "tO: (A ~"~, L~)o~:~-> (®o, ®~)o~:g. 

We have to explicitize the interpolation spaces appearing in (4.7) We consider the 
right hand side of (4.7) first. Upon using [2111 th. 5.8 and th  5.3 along with the defi- 
nition of the Lorentz trace class ~ (cf. Sub-Section 2.1) we readily obtain 

(4.8) (~o, ~)e~;x= ~(o) with 1 1 1 ~ p - - O  2 ' r=Oq.  

Next we turn  to the left hand side of (4.7). I f  / has the expansion ] = ~a.~%~ we 
may  write 

E(t, ]; {AE'~,/,s})= ( X ,  ]a,,l~) ½ 

If  follows tha t  

(4.9) I f  " " dt]ll" 

Now we specialize, taking r = 2. Then we may  interchange f and ~ in (4.9). 
We get 

(p,l~l)" ~,~ dt] ½ 

0 

= c[ (l#l + ¢ ] l ( K + I ) q l ]  = e l [ i l l . .  = 

where we have introduced 

W ' =  W~O = D((K @ I) ')  (analogue of Sobolev spaces). 

Using finally [21], th. 5.10~ we find 

(4.10) (A ~"~, L~)o,;x= (W') E°~ with s = a n ,  0 = - -  

Upon inserting (4.8) and (4.10) in (4.7) we get 

1 
1 ÷ ~ '  

r=Oql  provided r = 2.  

1 1 
(4.11) 'ID: W 8-> ~ with 

p 2 
8 

~b 
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Since W~o W ~ if s~<s~ it  follows from (4.11) tha t  

1 1 s 
(4.12) ql): W~- ,®~ with - - - - < -  . 

p 2 n 

Let  us fur ther  introduce 

B ~ = B(~ ~) = (L2, W(~))O~:K with s = @, a > s (analogue of Besov space) 

(Using ~PEETI~E [ 2 0 ]  w e  c a n  p u t  B sr in a ra ther  explicite form). Then another  inter- 
polation helps us (apply [21], th.  5.8) to improve (4.11) to 

1 1 s 
(4.13) 'ID: B~q--> ~ with 

p 2 - - n "  

This formula (4.13) is the desired analogue of Bernstein-Szasz. As noted in the Intro-  
duction our result improves in several respects upon the one obtained by  LAVI~E [7]. 

REMARK 4.2. -- The above method is of course also applicable in the classical 
case of the Fourier  t ransform ~ on R ~ (el. P~ ,T~E [19]) or T '~ (torus) (el. L@s-  
• ~5~ [8]). Generally speaking it can be applied for a var ie ty  of << transforms ~) as 
soon as one has defined an analogue of the Laplacian. (In the present  case it was the 
operator K). With  the considerations of Section 3 in mind we ask in part icular:  
Wha t  is the Laplacian on a general unimodular  group G (or, dually~ on ~)? 

4.2. - We now sketch an extension of the depelopments of SubSection 4.1 to the 
case of an infinite number  of dimensions~ which might  be of interest  f rom the point  
of quan tum field theory.  This case has previously also been considered b y  SEGAL [26]. 
The step n - +  c~ cannot  be performed without  making several adjustments  of the 
original setup of Subsection 4.1. In  the first place Haar  measures have to be replaced 
by  (normalized) Gauss measures. Thus in place of Z2(R ~) and JS~(R ~) we should 
take L2(JE', 7') and ~(52, 7) where 52 is a given complex Hilber t  space and 52' any 
one of its real forms, and 7 and 7' the corresponding (normalized) Gauss measures. 
An expression for the anlogue of the Weyl  t ransform can now readily be wri t ten  
down (cf. SEGA~ [25]). I t  is however much more convenient  to work with the for- 
realism of the (boson) Fock space 37 = Y~ buil t  on 52, i.e. formally we have 

In  fashion could also have t rea ted  the of i.e. a n  analogous w e  fermions, c a s e  

h~s to be replaced by  
c o  

v = 0 ' v t i m e s  ' 
] 
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If  ~s,, %, ... is any  or thonormal  basis in ~ we obtain an orthonormM basis 9 v =  
--~o ....... -----%~ Q %~ Q ... in ~-, which will p lay  the role of the Hermi te  functions. 
The Weyl  t ransform can then  easily be expressed in terms of the creation and annihila- 
t ion operators,  as defined by  their  action on ~ov. The number  operator  N can also be 
defined as before. However  the fault  is tha t  the basic est imate (4.5) will break down; 
it is not  t rue  tha t  F will have finite rank  if ] E A. Therefore we use instead of N the 
<~ Hamil tonian  operator  ~> H formally defined b y  

where 2j ( =  the energy of the j- th particle state) is a given sequence of positive num- 
bers with ~ - +  co as j--> oo. I~et us pu t  

co(t) - -  X 1 .  

Then obviously co(t) < o~ for all t, and we have, replacing (4.5) 

(4.14) rank(F)  < co(t). 

I t  is now clear how the argument  of Sub-Section 4.1 can be carried through. How- 
ever the final result  will not  be at all so d e a n  as previously, unless we know a priori 
t ha t  co(t) can be est imated in terms of a power of t, a not  ve ry  natura l  assumption. 
E.g. corresponding to (4.11) we have 

1 1 
(4.15) q~:D((o~(K+I))~- - ->(~2 with - - a .  

p 2 

4.3. - Next  we tu rn  to the application to the spinor transforn.  Let  us s tar t  by  
briefly reviewing the necessary back-ground (cf. S~I~EA~.I~ [30] and the works quoted 
there  for more details). Le t  J¢ be a complex Hilber t  space and pick up any  of its real 
forms, say, J¢'. By  so(SC)0 we denote the Lie algebra of skew-symmetric operators T 
of finite rank  in ~ ' ,  and by  spin(~ ' ) ,  the  Lie algebra generated by  all commutators  
[h~, h2] ~-- h~h2--h2h~, h~, ha ~ 56', considered as elements of the Clifford algebra 
Cliff(~') over J¢'. The spinor t ransform $: so(J¢')o-+ spin(5C)0 is then  the canonical 
isomorphism defined by  

s(T) = [hl, hal if r h  = [[hi, hd, h i .  

Next  we have to define so and spin analogues of the Lorentz  spaces. We define 
so (~ ' )~  as the closure of so(J¢')0 in ®rQ = ~ ( 5 ¢ ) ,  and so(J¢')~ as the closure of 
so(3C)o in ®~ = ®~(~) ; clearly so(J¢')~ = so(3¢')~. Using the (unique central  state co 
in the complex Clifford algebra Cliff(~) and the Gel 'fand-Naimark-Segal construc- 
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t ion with this co, we can represent Cliff(J¢), and thus Cliff(JC), as operators in some 
complex t t i lbert  space 3~. We can now similarly define spin(JE~)~ and spin (J¢')~ 
by  using ~ = ~ ( J ~ )  and ~ = ~ ( ~ ) .  In  particular holds thus 

]I h ]lsp~(~')~ = co((h* h)~m) u~ if h e spin(J¢')0. 

We can extend 8 to so(JU)~ by continuity.  In  particular holds (S~EATE~ [30]) 

(4 .16)  8: so(J¢')2--> spin(J¢')~ (unalogue of Parseval 's relation) 

Using (4.16), und the analogue of Minkowsky-Young, along with complex interpola- 
tion, he [30] proves the analogue of the Hausdorff-Young theorem. I t  is clear tha t  
we can recapture this by  our methods, and now also prove the analogue of the Paley 
theorem, exactly as in Section 3 in the ease of a unimodular  group (see (3.3) and (3.4)). 
t towever we shall again restrict us to a sort of analogue of Bernstein-Szasz, as in 
Sub-Section 4.1 and 4.2 for the Weyl  transform. 

To this end, let T c so(JC)o and let {=L 2i2k}~=~, with 2~>~2~>. . .>~ > 0, be the 
non-zero eigenvalues of T. Then there exists a set of uni t  elements {e~}~ ~ in 3¢ ~ such 
that 

I f  follows tha t  

Te2k_~ = i l k  e2k+~ , Te~k+~ ----- - -  i t ~  e ~ _ ~  . 

k = l  

A simple calculation [30] shows tha t  8(T) has the 2" eigenvalues =[= ~1 ~= 25 i . . .  • 2~. 
Hence we have 

(4.17) ]I 8(T)][sDiu(j¢,)° < 2~. 

I t  is now natural  to introduce the Abelian group A corresponding to the functional 

llrll  = suoo T .  

(Cf. the definition of A in Sub-Section 4.1; supp T is defined in Section 1.) This is 
not a norm (nor a quasi-norm) in the strict sense of [21]. Now (4.17) can be rewritten as 

(4.18) 8: el --> spin(JC)o. 

By  interpolation ([21], th. 5.2, which result still can be adapted to our present situa- 
tion) we get from (4.18) and (4.16) 

(4.11) 8: (A, so(JE')~)0~;K--~ (spin(JE')o, spin(JC)2)0~:g • 
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I t  is easy to  see (cf. (4.8)) 

1 1 1 
(4.20) (spin (~E')o, spin (SC'),)0~,xc spin (~E'),, if . . . . .  r= -  0q. 

p 0 2 '  

(Since spin(;E')~ is a re t rac t  (cf. [17]) of @~ we have  indeed = in place of c in (4.20)). 
Fur ther ,  since 

we have  

so 

co 

( | t a r ( Z ~ | r l 2 - - ]  w i t h ~  r Oq 

0 

Final ly ,  we int roduce the  <( Sobolev class >> W ~ corresponding to the  funct ional  

l i T l i ~  ~ = (Z ( 2 ' = ~ ? ) ½  ; 

this  is not  a norm nor  is W ~ a vector  space. Using (4.20) and  (4.21), with r = 2, 
we get f rom (4.19), exac t ly  as in Sub-Section 4.1, 

(4.22) 8: W ~ - .  spin(~E')~ if ~ = l ip  - -  1 /2 ,  

which is our desired result  and  should be compared  to (4.11). I n  the same way,  
corresponding to (4.12), we can prove  

(4.23) 3: W'*-+ spin (~')~ if ~ >  1 1 
p 2 

I f  one wants  to  one can also define a <( Besov space >> B ~a and  prove  a result  of the 
t ype  (4.13). Because of the  essentially non-l inar  character ,  the analogy with Bern- 

stein-Szacz is of course on a ve ry  superficial level. 

5. - A class o f  Banach  couples.  

I n  this Section we wan t  to t r ea t  the  considerations of Sub-Section 2.2 in a some- 
wha t  more  general  f ramework .  I n  par t icular  we will p rove  the basic formula  (2.3). 
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Let  us recall the notion of pseudoretract  (PEET~E [17]). Let  A and B be any  
two Banach couples. We say tha t  A is a (bl-) pseudoretract of B if 1 ° there exists a 
bounded (b) (not necessary linear!) map ~: A - ~ B ,  which by de]inition means tha t  

(5.1) K(t, aa; B) <~ K(t, a; A) for all a ~ Z(A) 

and 2 o there  exists for any  a e Z(A) a l inear (l) map fi~: B - > A ,  which implies 
that 

(5.2) ~K(t, fiab; A)<~K(t, b; B) for all b ~X(B),  

such tha t  there  holds 

(5.3) a = #o (~ (a ) ) .  

(If  fi~ does not  depend on a, fl~----fl~ we m a y  write (5.3) simply as fl o~----id, and 
we say tha t  A is a (bl-) retract of B.) I f  we combine (5.1) and (5.2), with b---- aa, 

we obtain 

(5.4) K(t, a; A) = K(t, cza; B) for all a ~Z(A) 

We now show tha t  formula (2.3) ma y  be conceived as a special case of (5.4), with 
a convenient  choice of B. Denote  b y  ~(w) the space of Radon measures ~ on [0, ~ )  
corresponding to the norm 

oo  

I1~ 1[.~(~) = fw(s)laS(s)I ; 
0 

w----w(s) is a given positive weight function. We choose B---- ~ = (~(s),E(1)}. I t  

is known tha t  (cf. e.g. [2]) 

oo 

(5.5) K(t ,  ~; {~(s) ,  3 ( z ) } )  = fmin(s, t) Id~(s)t • 
0 

Let  A = (L~ Z~} = (L~(F), L~(F)} where F is any gage space, l~ow shall we de- 
fine ~ ~nd ~ ?  We observe that ,  since T*(t) is a decreasing function~ we m~y write 

c~ 

T*(t) = fd~(s) 
t 

with a positive ~. Accordingly we define ~ ( T ) =  ~, i.e. 

co  

T*(t) = id~(s, T) . 
J 
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t 

I t  is now easy to establish condition 1 o. Let  us take  for granted tha t  T ~-> fT*(s)ds 
0 

is a norm, for fixed t, which may  be established in one way or other. I f  T = T. @ T~ 
we ~herefore get 

t t t 

0 0 0 

This proves the inequal i ty  ~> in (2.3), which again by  (5.5) is equivalent  to (5.1), 
for a simple integrat ion by  parts  shows tha t  

~ co 

f T*(s) ds = fmin(s ,  t) dg(T, s) . 
0 0 

We proceed to the definition of/~T. For  simplicity let us assume tha t  T is positive. 
co 

Consider the corresponding spectral  resolution T = ~AdP(t).  If  t---~#(t, T) is the 
o 

inverse of the funct ion t -+  T*(t) we ma y  write this as 

(5.6) 

co 

T ---- fT*(t)  d~(t) 
0 

with ~(t) = _P(#(t, T)). This leads us to define 

co co 

0 t 

Clearly f i t  is l inear; boundedness and thus (5.2) follows from 

where we huve used 

= if ~ positive; 

we need establish (5.7) for ~ positive only. Final ly  (5.3) is a res ta tement  of (5.6), 
and we have verified condition 2 ° entirely.  Thus in sum we have proven 

:PROPOSITION 5.1. - -  For  any  gage space / ' ,  {L~, L~} is a pseudoretract  of E. [] 

In  part icular  (2.3) has been proven.  There arises the obvious question whether  
the other  developments  of Sub-Section 2.2 can be t rea ted  on the same general level. 
(As another ,  more general instance to which our t r en tmen t  generalizes we ment ion 
the case of the Lorentz  couple {L~°I, L~,I}. I f  P c =  :l, p l = c ~ w e g e t b a e k  {L1, L~}). 
I n  this direction we can prove the analogue of th.  2.4. 
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PROPOSITIOI~ 5.2. -- Le t  A = {Ao, A~} be any  pseudore t rac t  of .~., wi th  a and  ft, 
hav ing  the  same meaning  as above.  Consider the  space A corresponding to  the  nozm 

o o  o o  

0 

Then  A is ~ K-space  for A. 

P~ooF. - Obvious adap ta t ion  of the  proof of th.  2.4. [] 

R E ~  5.1. - SEDA~V and SE~[E~0V [22] recent ly  p roved  the  analogue of the  

Mitjagin-Cotlar  result  (cf. r e m a r k  2.1) for the  couple S (which incident ly  one of us 

conjectured a l ready years  ago). I t  is now na tu ra l  to ask whether  an  analogous result  
holds for any  pseudore t rac t  of ~.  

R E ~ R K  5.2. -- I t  appears  likewise l ikely t h a t  a similar abs t rac t  t r e a t m e n t  of the 
theory  indicated in Sub-Section 2.3 is possible. 
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