Skip to main content

Advertisement

Log in

Tensile properties of antler bone

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The tensile deformation characteristics of compact bone from deer antler were measured in both the “dry” and “wet” states and compared with published values for bovine compact bone. The tensile strength in the wet state (108±5.1 MN/m2) was comparable to the value for bovine compact bone tested at the same strain rate. The modulus value was very low: 7.5±0.9 GN/m2. The work to fracture was comparatively high, about 3 times that for bovine compact bone. Fractographic examination revealed fibrillar and osteonal shear for samples fractured in the dry state. In the samples tested in the wet state, some regions exhibited pull-out of lamellar segments from within a Haversian system. The results are explained in terms of the higher collagen content and lesser degree of mineralization in the antler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, T. M., Hayes, W. C.: Tensile testing of bone over a wide range of strain rates: effects of strain rate, microstructure and density, Med. Biol. Eng. Comput.14:671–680, 1976

    CAS  Google Scholar 

  2. Saha, S., Hayes, W. C.: Instrumented tensile-impact tests of bone. Exp. Mechan.14:473–478, 1974

    Article  Google Scholar 

  3. Saha, S., Hayes, W. C.: Tensile impact properties of human compact bone, J. Biomechan.9:243–251, 1976

    Article  CAS  Google Scholar 

  4. Eastoe, J. E.: The organic matrix of bone. In G. H. Bourne (ed.) The Biochemistry and Physiology of Bone. pp. 81–105. Academic Press, New York, 1956

    Google Scholar 

  5. Modell, W.: Horns and antlers, Sci. Am.220:114–122, 1969

    Article  Google Scholar 

  6. Currey, J. D.: Mechanical properties of bone tissues with greatly differing functions, J. Biomechan.12:313–319, 1979

    Article  CAS  Google Scholar 

  7. ASTM: Plastic—General methods of testing, Nomenclature Part 27, ASTM, 585–592, 1967

  8. Yannas, I. V.: Collagen and gelatin in the solid state, J. Macromol. Sci. Rev. Macromol. Chem.7:49–104B, 1972

    CAS  Google Scholar 

  9. Boyde, A.: Scanning electron microscope studies of bone. In G. H. Bourne (ed.): The Biochemistry and Physiology of Bone, Vol. 1, pp. 259–310. Academic Press, New York, 1972

    Google Scholar 

  10. Bergmann, I., Loxley, R.: Two improved and simplified methods for the spectrophotometric determination of hydroxyproline, Anal. Chem.35:1961–1965, 1963

    Article  Google Scholar 

  11. Lindberg, O., Ernster, L.: Determination of organic phosphorus compound by phosphate analysis, Meth. Biochem. Anal.3:1–22, 1956

    CAS  Google Scholar 

  12. Minari, O., Zilversmit, D. B.: Use of KCN for stabilization of colour in direct Nesslerisation of Kjeldahl digest, Anal. Biochem.6:320–327, 1963

    Article  CAS  PubMed  Google Scholar 

  13. Bonfield, W., O'Connor, P.: Anelastic deformation and the friction stress of bone, J. Mater. Sci.13:202–207, 1978

    Article  Google Scholar 

  14. Reilly, D. T., Burstein, A. H.: The mechanical properties of cortical bone, J. Bone Joint Surg56-A:1001–1022, 1974

    Google Scholar 

  15. Ascenzi, A., Bonucci, E.: The ultimate tensile strength of single osteons, Acta Anat. (Basel)58:160–183, 1964

    Article  CAS  PubMed  Google Scholar 

  16. Evans, F. G.: The mechanical properties of bone, Artif. Limbs13:37–48, 1969

    CAS  PubMed  Google Scholar 

  17. Currey, J. D.: The mechanical consequences of varying the mineral content of bone, J. Biomechan.2:1–11, 1969

    Article  CAS  Google Scholar 

  18. Carter, D. R., Hayes, W. C.: Compact bone fatigue damage. I. Residual strength and stiffness, J. Biomechan.10:325–337, 1977

    Article  CAS  Google Scholar 

  19. Saha, S., Hayes, W. C.: Relations between tensile impact properties and microstructure of compact bone, Calcif. Tissue Res.24:65–72, 1977

    Article  CAS  PubMed  Google Scholar 

  20. Piekarski, K. R.: Fracture of bone, In: Fracture Vol. I, pp. 607–642. ICF4, Waterloo, Canada, June 19–24, 1977

  21. Pugliarello, M. C., Vittur, E., de Bernard, B., Bonucci, E., Ascenzi, A.: Chemical modifications in osteons during calcification, Calcif. Tissue Res.5:108–114, 1970

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajaram, A., Ramanathan, N. Tensile properties of antler bone. Calcif Tissue Int 34, 301–305 (1982). https://doi.org/10.1007/BF02411255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411255

Key words

Navigation