Skip to main content
Log in

DNA sequence organization and RNA complexity inMatthiola incana (Brassicaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The DNA of the cruciferMatthiola incana (Brassicaceae, Capparales) has been investigated for the pattern of sequence interspersion and RNA transcription. A short period pattern of interspersion (Xenopus-like interspersion pattern) is predominant (60%). Similar to a series of other Angiosperms (tobacco, soybean, parsley and some cereals) repetitive clusters orinter-se interspersion patterns of repetitive DNA occur inMatthiola genome and amount to 12%. From the hybridization of single copy DNA with poly(A)-RNA and from cDNA/poly(A)+-RNA and cDNA/poly(A)-RNA hybridizations a number of about 9,400 active genes can be estimated forM. incana seedlings. Both RNA constituents (poly(A)+-RNA and poly(A)-RNA) contain mainly the same protein-coding mRNA sequences. Total mRNA is amounting to about 4% of theM. incana RNA population. A total of 1.2% (or about 30% of mRNA) of theM. incana RNA is represented by polyadenylated mRNA sequences. About 3.6% of single copy DNA hybridizes with poly(A)-RNA. Approximately 7% of theM. incana genome, organized in a short period pattern of DNA sequence interspersion, is transcribed into RNA sequences (mRNA). About 6% of clustered repetitive DNA is expressed into RNA sequences such as rRNA and tRNA. Approximately 1.6 × 106 rRNA, 1.75 × 107 tRNA and 3.7 × 105 mRNA molecules are present perMatthiola seedling cell. The transcription rate of single rRNA and tRNA genes can be estimated to be about 1,400 or 1,100 copies per gene, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Britten, R. J., Graham, D. E., Neufeld, B. R., 1974: Analysis of repeating DNA sequences by reassociation. — In:Grossman, L., Moldave, K., (Eds.): Methods in Enzymology29 E, 363–418, 1974. — New York: Academic Press.

    Google Scholar 

  • Dawkins, R., 1976: The Selfish Gene. — Oxford: University Press.

    Google Scholar 

  • Doolittle, W. F., Sapienza, C., 1980: Selfish genes, the phenotype paradigm and genome evolution. — Nature284, 601–603.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, R. B., 1978: DNA sequence organization in the soybean plant. — Biochem. Genetics16, 45–68.

    Article  CAS  Google Scholar 

  • ——, 1978: Sequence complexity of nuclear and polysomal RNA in leaves of the tobacco plant. — Cell14, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Gollmer, I., 1980: Untersuchungen zur Genexpression während der Entwicklung und Differenzierung der BlütenpflanzeMatthiola incana. — Dissertation, Tübingen.

    Google Scholar 

  • Graham, D. E., Neufeld, B. R., Davidson, E. H., Britten, R. J., 1974: Interspersion of repetitive and non-repetitive DNA sequences in the sea urchin genome. — Cell1, 127–137.

    Article  CAS  Google Scholar 

  • Grierson, D., Covey, S., 1975: Changes in the amount of ribosomal and poly(A)-containing RNA during leaf development. — Planta127, 770–786.

    Google Scholar 

  • ——, 1977: Ribonucleic acids from the higher plantMatthiola incana. Molecular weight measurements and DNA/RNA hybridization studies. — Biochem. Biophys. Acta475, 424–436.

    CAS  PubMed  Google Scholar 

  • Gurley, W. B., Hepburn, A. G., Key, J. L., 1979: Sequence organization of the soybean genome. — Biochem. Biophys. Acta561, 167–183.

    CAS  PubMed  Google Scholar 

  • Hamer, D. H., Thomas, C. A. Jr., 1974: Palindrome theory. — J. Molec. Biol.84, 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Harbers, E., 1975: Nukleinsäuren — Biochemie und Funktion. 2. Auflage. — Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  • Hemleben, V., Ermisch, N., Kimmich, D., Leber, B., Peter, G., 1975: Studies on the fate of homologous DNA applied to seedlings ofMatthiola incana. — Eur. J. Biochem.56, 403–411.

    Article  CAS  PubMed  Google Scholar 

  • ——, 1977: The use of equilibrium centrifugation in actinomyein caesium chloride for the purification of ribosomal DNA. — Pl. Sci. Lett.9, 129–135.

    Article  CAS  Google Scholar 

  • Kamalay, J. C., Goldberg, R. B., 1980: Regulation of structural gene expression in tobacco. — Cell19, 935–946.

    Article  CAS  PubMed  Google Scholar 

  • Kiper, M., Herzfeld, F., 1978: DNA sequence organization in the genome ofPetroselinum sativum (Umbelliferae). — Chromosoma65, 335–351.

    Article  CAS  Google Scholar 

  • ——, 1979: Gene number estimates in tissues and cells. — Pl. Syst. Evol. Suppl.2, 129–140.

    Google Scholar 

  • Lindberg, U., Persson, T., 1972: Isolation of messenger RNA from KB cells by affinity chromatography on polyuridylie acid covalently linked to sepharose. — Eur. J. Biochem.31, 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Maniatis, T., Jeffrey, A., Kleid, D. G., 1979: Nucleotide sequence of the rightward operator of phage lambda. — Proc. Natl. Acad. Sci. USA72, 1184–1188.

    Google Scholar 

  • Nagl, W., 1976: Zellkern und Zellzyklen. — Stuttgart: Eugen Ulmer Verlag.

    Google Scholar 

  • Orgel, L. E., Crick, F. H. C., 1980: Selfish DNA: The ultimate parasite. — Nature284, 604–607.

    Article  CAS  PubMed  Google Scholar 

  • Rimpau, J., Smith, D., Flavell, R., 1978: Sequence organization analysis of the wheat and rye genomes by interspecies DNA/DNA hybridization. — J. Mol. Biol.123, 327–359.

    Article  CAS  PubMed  Google Scholar 

  • Silflow, C. D., Hammett, J. R., Key, J. L., 1979: Sequence complexity of polyadenylated ribonucleic acid from soybean suspension culture cells. — Biochemistry18, 2725–2731.

    Article  CAS  PubMed  Google Scholar 

  • Straus, N. A., 1976: Repeated DNA in eucaryotes. — In:King, R. C., (Ed.): Handbook of Genetics5: Molecular Genetics. — New York, London: Plenum Press.

    Google Scholar 

  • Sutton, W. D., 1971: A crude nuclease preparation suitable for use in DNA reassociation experiments. — Biochim. Biophys. Acta240, 522–531.

    CAS  PubMed  Google Scholar 

  • Thompson, W. F., 1977/78: Perspectives on the evolution of plant DNA. — Carnegie Inst. Washington Yearb.77, 310–316.

    Google Scholar 

  • Walbot, V., Goldberg, R., 1979: Plant genome organization and its relationship to classical plant genetics. — In:Hall, T. C., Davies, I. W., (Eds.): Nucleic Acids in Plants, 4–36. — Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Wenzel, W., Hemleben, V., 1979: DNA reassociation studies and considerations on the genome organization and evolution of higher plants. — Pl. Syst. Evol. Suppl.2, 29–40.

    Google Scholar 

  • Wenzel, W., Hemleben, V., 1982: A comparative study of genomes in Angiosperms. — Pl. Syst. Evol.139, 209–227.

    Article  Google Scholar 

  • Wickens, M. P., Buell, G. N., Schimke, R. T., 1978: Synthesis of double-stranded DNA complementary to lysozyme, ovomucoid, and ovalbumin mRNAs. — J. Biol. Chem.253(7), 2483–2495.

    CAS  PubMed  Google Scholar 

  • Williamson, R., Morrison, M., Lanyon, G., Eason, R., Paul, J., 1971: Properties of mouse globin messenger ribonucleic acid and its preparation in milligram quantities. — Biochemistry10, 3014–3031.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman, I. L., Goldberg, R. B., 1977: DNA sequence organization in the genome ofNicotiana tabacum. — Chromosoma59, 227–252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzel, W., Hemleben, V. DNA sequence organization and RNA complexity inMatthiola incana (Brassicaceae). Pl Syst Evol 140, 75–86 (1982). https://doi.org/10.1007/BF02409898

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02409898

Key Words

Navigation