Skip to main content
Log in

DNA sequence organization in the soybean plant

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The arrangement of repetitive and nonrepetitive DNA sequences in the soybean genome was ascertained by a comparison of the reassociation kinetics of short (250 nucleotides) and long (2700 nucleotides) DNA fragments, the size distribution of S-1 nuclease resistant repetitive duplexes, and a direct assay of the spectrum of DNA sequences present on long DNA fragments enriched in repetitive DNA. These measurements reveal the following: (1) The 1N genome size of the soybean plant is 1.97 pg. (2) Approximately 40% of the soybean genome consists of nonrepetitive or single-copy DNA sequences, while 60% is repetitive DNA. (3) The repetitive DNA is partitioned into three discrete classes termed “very fast,” “fast,” and “slow,” containing DNA sequences repeated an average of 290,000, 2800, and 19 times each. (4) Approximately 35–50% of the soybean genome is arranged in a short-period interspersion pattern of 250 nucleotide slow sequences and single-copy DNA averaging up to 2700 nucleotides in length. (5) From 30% to 45% of the soybean genome is organized into long stretches of repetitive DNA at least 1500 nucleotides in length. (6) Minimal interspersion of repetitive sequence classes occurs in soybean DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angerer, R. C., Davidson, E. H., and Britten, R. J. (1975). DNA sequence organization in the mollusc Aplysia californica. Cell 629.

    Google Scholar 

  • Angerer, R. C., Davidson, E. H., and Britten, R. J. (1976). Single copy DNA and structural gene sequence relationships among four sea urchin species. Chromosoma 56213.

    Google Scholar 

  • Bendich, A. J., and McCarthy, B. J. (1970). DNA comparisons among barley, oats, rye, and wheat. Genetics 65545.

    Google Scholar 

  • Britten, R. J., and Davidson, E. H. (1969). Gene regulation in higher cells—A theory. Science 165349.

    Google Scholar 

  • Britten, R. J., and Davidson, E. H. (1976). DNA sequence arrangement and preliminary evidence on its evolution. Fed. Proc. 352151.

    Google Scholar 

  • Britten, R. J., and Smith, J. (1970). A bovine genome. Carnegie Inst. Wash. Year Book 68378.

    Google Scholar 

  • Britten, R. J., Pavich, M., and Smith, J. (1970). A new method for DNA purification. Carnegie Inst. Wash. Year Book 68400.

    Google Scholar 

  • Britten, R. J., Graham, D. E., and Neufeld, B. R. (1974). An analysis of repeating DNA sequences by reassociation. Methods Enzymol. 29E363.

    Google Scholar 

  • Cech, T. R., and Hearst, J. E. (1976). Organization of highly-repeated sequences in mouse main-band DNA. J. Mol. Biol. 100227.

    Google Scholar 

  • Chamberlin, M. E., Britten, R. J., and Davidson, E. H. (1975). Sequence organization in Xenopus DNA studied by the electron microscope. J. Mol. Biol. 96317.

    Google Scholar 

  • Crain, W. R., Davidson, E. H., and Britten, R. J. (1976a). Contrasting patterns of DNA sequence arrangement in Apis mellifera (honeybee) and Musca domestica (housefly). Chromosoma 591.

    Google Scholar 

  • Crain, W. R., Eden, F. C., Pearson, W. R., Davidson, E. H., and Britten, R. J. (1976b). Absence of short period interspersion of repetitive and non-repetitive sequences in the DNA of Drosophila melanogaster. Chromosoma 56309.

    Google Scholar 

  • Davidson, E. H., and Britten, R. J. (1973). Organization, transcription, and regulation in the animal genome. Quart. Rev. Biol. 48555.

    Google Scholar 

  • Davidson, E. H., Hough, B. R., Amenson, C. S., and Britten, R. J. (1973). General interspersion of repetitive with nonrepetitive elements in the DNA of Xenopus. J. Mol. Biol. 771.

    Google Scholar 

  • Davidson, E. H., Graham, D. E., Neufeld, B. R., Chamberlin, M. E., Amenson, C. S., Hough, B. R., and Britten, R. J. (1974). Arrangement and characterization of repetitive sequence elements in animal DNAs. Cold Spring Harbor Symp. Quant. Biol. 38295.

    Google Scholar 

  • Davidson, E. H., Galau, G. A., Angerer, R. C., and Britten, R. J. (1975). Comparative aspects of DNA sequence organization in metazoa. Chromosoma 51253.

    Google Scholar 

  • Deininger, P. L., and Schmid, C. W. (1976). An electron microscope study of the DNA sequence organization of the human genome. J. Mol. Biol. 166773.

    Google Scholar 

  • Firtel, R. A., and Kindle, K. (1975). Structural organization of the genome of the cellular slime mold Dictyostelium discoideum: Interspersion of repetitive and single copy DNA. Cell 5401.

    Google Scholar 

  • Flavell, R. B., and Smith, D. B. (1976). Nucleotide sequence organization in the wheat genome. Heredity 37231.

    Google Scholar 

  • Flavell, R. B., Bennett, M. D., Smith, J. B., and Smith, D. B. (1974). Genome size and proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 4257.

    Google Scholar 

  • Galau, G. A., Chamberlin, M. E., Hough, B. R., Britten, R. J., and Davidson, E. H. (1976). Evolution of repetitive and nonrepetitive DNA. In Ayala, F. (ed.), Molecular Evolution, Sinauer Assoc., Sunderland, Mass., pp. 200–224.

    Google Scholar 

  • Goldberg, R. B., Bemis, W. P., and Siegel, A. (1972). Nucleic acid hybridization studies within the genus Cucurbita. Genetics 72253.

    Google Scholar 

  • Goldberg, R. B., Crain, W. R., Ruderman, J. V., Moore, G. P., Barnett, T. R., Higgens, R. C., Gelfand, R. A., Britten, R. J., and Davidson, E. H. (1975). DNA sequence organization in the genomes of five marine invertebrates. Chromosoma 51225.

    Google Scholar 

  • Manning, J. E., Schmid, C. W., and Davidson, N. (1975). Interspersion of repetitive and non-repetitive DNA sequences in the Drosophila melanogaster genome. Cell 4141.

    Google Scholar 

  • Schmid, C. W., Manning, J. E., and Davidson, N. (1975) Inverted repeat sequences in the Drosophila genome. Cell 5159.

    Google Scholar 

  • Smith, D. B., and Flavell, R. B. (1977). Nucleotide sequence organization in the rye genome. Biochim. Biophys. Acta 47482.

    Google Scholar 

  • Smith, M. J., Britten, R. J., and Davidson, E. H. (1975). Studies on nucleic acid reassociation kinetics: Reactivity of single-stranded tails in DNA-DNA renaturation. Proc. Natl. Acad. Sci. 724805.

    Google Scholar 

  • Studier, F. W. (1965). Sedimentation studies of the size and shape of DNA. J. Mol. Biol. 11373.

    Google Scholar 

  • Thompson, W. F. (1976). Aggregate formation from short fragments of plant DNA. Plant Physiol. 57617.

    Google Scholar 

  • Walbot, V., and Dure, L. S. (1976). Developmental biochemistry of cotton seed embryogenesis and germination. VII. Characterization of the cotton genome. J. Mol. Biol. 101 503.

    Google Scholar 

  • Wells, R., Royer, H. D., and Hollenberg, C. P. (1976). Non Xenopus-like DNA sequence organization in the Chironomus tentons genome. Mol. Gen. Genet. 14745.

    Google Scholar 

  • Wetmur, J. G., and Davidson, N. (1968). Kinetics of renaturation of DNA. J. Mol. Biol. 31349.

    Google Scholar 

  • Zimmerman, J. L., and Goldberg, R. B. (1977). DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma 59227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These experiments were supported by NSF Grants BMS74-21461 and PCM76-24593 and were conducted while the author was in the Department of Biology, Wayne State University, Detroit, Michigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, R.B. DNA sequence organization in the soybean plant. Biochem Genet 16, 45–68 (1978). https://doi.org/10.1007/BF00484384

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484384

Key words

Navigation