Advertisement

Water, Air, and Soil Pollution

, Volume 97, Issue 3–4, pp 397–412 | Cite as

The effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media

  • C. R. Paige
  • W. J. Snodgrass
  • Ronald V. Nicholson
  • J. M. Scharer
  • Q. H. He
Article

Abstract

The presence of phosphate retards the transformation of ferrihydrite into crystalline products. Increasing phosphate from 0 to 1 mole % results in an order of magnitude decrease in the rate of transformation of ferrihydrite at pH 12. Levels of phosphate of ∼1 mol % suppress the formation of goethite (α-FeO(OH)) and result in the formation of a product consisting ofη-Fe2O3. Higher levels of phosphate result in the ferrihydrite remaining amorphous, even after several hundred hours. Phosphate prevents formation of goethite by hindering the dissolution of ferrihydrite rather than by interfering with nucleation and growth of goethite in solution. The transformation rate of pure ferrihydrite is also strongly inhibited in the presence of dissolved phosphate. This is due to surface complexation. The transformation rate was measured at temperatures of 60 °C and 70 °C. The rate of transformation was found to be described by either (i) a solid-state reaction equation for powdered compacts or (ii) a zero-order reaction controlled by desorption. The transformation of the ferrihydrite matrix was accompanied by the loss of the phosphate trace component. X-ray diffraction indicates that no solid solution involving phosphate substitution intoη-Fe2O3 is formed. Transmission electron microphotographs of the original precipitates containing phosphate confirm the presence of the phosphate and demonstrate its involvement in linking together extremely small particles of ferrihydrite.

Key words

desorption ferrihydrite modelling phosphate TEM transformation wastewater 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams W. A. and Kassim, J. K.: 1984,J. Soil Sci. 35, 117.Google Scholar
  2. Acheson, R. J. and Galwey, A. K.: 1968,J. Chem. Soc. A 942.Google Scholar
  3. Broadbent, D., Dollimore, D. and Dollimore, J.: 1966,J. Chem. Soc. A 1491.Google Scholar
  4. Combes, J. M., Manceau, A. and Calas, G.: 1990,Geochim. Cosmochim. Acta 454, 1083–1091.CrossRefGoogle Scholar
  5. Cornell, R. M.: 1987,Dang Bodenkd. 150, 304.Google Scholar
  6. Cornell, R. M.: 1988,Clay Miner,23, 329.Google Scholar
  7. Cornell, R.M., Giovanoli, R. and Schneider, W.: 1990,Clays and Clay Minerals 38, No. 1, 21.Google Scholar
  8. Cornell, R. M. and Giovanoli, R.: 1988,Polyhedron 7, 385.CrossRefGoogle Scholar
  9. Cornell, R. M. and Schneider, W.: 1989,Polyhedron 8, 149.CrossRefGoogle Scholar
  10. Cornell, R. M. and Schwertmann, U.: 1979,Clays and Clay Minerals 27, 402.Google Scholar
  11. Duffus, J. H.: 1980, Environmental Toxicology.Resource and Environmental Sciences Series. Edward Arnold, London.Google Scholar
  12. Eggleton, R. A. and Fitzpatrick, R. W.: 1988,Clays and Clay Minerals 36, 111.Google Scholar
  13. Feitknecht, W. and Michaelis, W.: 1962,Helv. Chim. Acta 45, 212.CrossRefGoogle Scholar
  14. Fischer, W. R. and Schwertmann, U.: 1975,Clays and Clay Minerals 23, 33.Google Scholar
  15. Franklin, M. L. and Flanagan, T. B.: 1972,J. Chem. Soc., Dalton Trans. 192.Google Scholar
  16. Golterman, H. L.: 1976, ‘Zonation of Mineralization in Stratifying Lakes’, in J. M. Anderson and A. MacFadyen (eds.),The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, Oxford, pp. 3–22.Google Scholar
  17. He, Q. H., Leppard, G. G., Paige, C. R. and Snodgrass, W. J.: 1996, ‘Transmission Electron Microscopy of a Phosphate Effect on the Colloid Structure of Iron Hydroxiders, Water Research, Vol. 30, No. 6, pp. 1345–1352.CrossRefGoogle Scholar
  18. Hulbert, S. F.: 1969,J. Br. Ceram. Soc. 6, 11.Google Scholar
  19. Jackson, T. A. and Keller, W. D.: 1970,Amer. J. Sci. 269, 446.CrossRefGoogle Scholar
  20. Johnston J. H. and Lewis, D. G.: 1983,Geochim. Cosmochim. Acta 47, 1823.CrossRefGoogle Scholar
  21. Jones, K. A., Acheson, R. J., Wheeler, B. R. and Galwey, A. K.: 1968, ‘Thermal Decomposition of Nickel Malonate’, Trans. Faraday Soc.64.Google Scholar
  22. Jones, L. F., Dollimore, D. and Nicklin, T.: 1975,Thermochimica Acta 13, 240.CrossRefGoogle Scholar
  23. Leckie, J. O., Merrill, D. T. and Chow, W.: 1985, ‘Trace Element Removal from Power Plant Wastestreams by Adsorption/Coprecipitation with Amorphous Iron Oxyhydroxide’, A. I. Ch. E. Symposium series 243, 81, pp. 282.Google Scholar
  24. Lewis and Schwertmann, U.: 1979,Clay Miner 14, 115.Google Scholar
  25. MacKay,: 1960, ‘Some Aspects of the Topochernistry of the Iron Oxides and Hydroxides’, 4th International Symp. Reactivity of Solids. Amsterdam.Google Scholar
  26. Meeter D. A. and Wolfe P. J.: 1965, ‘Non-Linear Least Squares (Gaushaus)’, Univ. of WI Computing Center.Google Scholar
  27. Murphy, P. J., Possner, A. M. and Quirk, J. P.: 1976,J. Coll. Interface Sci. 56, 312.CrossRefGoogle Scholar
  28. Paige, C. R., Snodgrass, W. J., Nicholson, R. V. and Scharer, J. M.: 1994,Water Poll. Res. J. Canada 29, No. 4, 507.Google Scholar
  29. Pierrou, U.: 1976, ‘The Global Phosphorus Cycle’, in B. H. Svensson and R. Soderlund (eds.),Nitrogen, Phosphorus and Sulfur Global Cycles, SCOPE Report 7. Ecological Bulletins, Vol. 22. Stockholm: Swedish Natural Science Research Council, pp. 75–88.Google Scholar
  30. Pomeroy, L. R.: 1970,Ann. Rev. Ecol. Syst. 1, 171.CrossRefGoogle Scholar
  31. Reiners, W. A. and Reiners, N. M.: 1970,J. Ecol. 58, 497.Google Scholar
  32. Schwertmann, U., Schulze, D. G. and Murad, E.: 1982,Soil Sci. Soc. A. J. 46, 869.CrossRefGoogle Scholar
  33. Schwertmann, U. and Taylor, R. M.: 1989, ‘Iron Oxides’, in J. B. Dixon and S. B. Weed (eds.),Minerals in Soil Environments. Soil Sci. Am., Book Series 1, 379–438.Google Scholar
  34. Schwertmann, U. and Fischer, W. R.: 1966,Z. Anorg. Allg. Chem. 346, 137.CrossRefGoogle Scholar
  35. Schwertmann, U. and Murad, E.: 1983,Clays and Clay Minerals 231, 277.Google Scholar
  36. Sherriff, R. A. F. and Galwey, A. K.: 1980, in Bamford, C. H. and Tipper, C. F. H. (eds.),Chemical Kinetics, Volume 22 Reactions in the Solid State, Elsevier Scientific Press, Amsterdam.Google Scholar
  37. Sun, T., Paige, C. R. and Snodgrass, W. J.: 1995, ‘The Effect of Cadmium on the Transformation of Ferrihydrite into Crystalline Products at pH 8’,Water, Air, and Soil Pollut. 93, 307–325.Google Scholar
  38. Tipping E., Woof, C. and Cooke, D.: 1981,Geochem. Cosmochim. Acta 45, 1411.CrossRefGoogle Scholar
  39. Walker, R. F.: 1969,Trans. Faraday Soc. 65, 3324.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • C. R. Paige
    • 1
  • W. J. Snodgrass
    • 1
  • Ronald V. Nicholson
    • 2
  • J. M. Scharer
    • 3
  • Q. H. He
    • 4
    • 5
  1. 1.Department of Civil Engineering and Engineering MechanicsMcMaster UniversityHamiltonCanada
  2. 2.Waterloo Centre for Ground Water ResearchUniversity of WaterlooWaterlooCanada
  3. 3.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada
  4. 4.Department of Environmental EngineeringXian University of Architecture and TechnologyP. R. China
  5. 5.Institute of Environmental EngineeringChina

Personalised recommendations