Skip to main content
Log in

Pure and impure clays and their firing products

  • Invited Papers, Including Remarks
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy is highly suited for the study of clays whose industrial uses depend on the iron content. Reactions that take place during clay firing can be readily monitored by Mössbauer spectroscopy. Following dehydroxylation of clay minerals, the quadrupole splitting of octahedrally coordinated iron (III) increases abruptly, but reverts to lower values upon the formation of new, better ordered phases at higher temperatures. It is also shown that iron oxides may account for a considerably higher proportion of the total iron content of many clays than is commonly recognized, and their existence must be taken into consideration for a correct interpretation of the Mössbauer spectra of clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kostikas, A. Simopoulos and N.H. Gangas, in Applications of Mössbauer Spectroscopy, vol. I, ed. R.L. Cohen (Academic Press, New York, 1965), p. 241.

    Google Scholar 

  2. B. Keisch, in Applications of Mössbauer Spectroscopy, vol. I, ed. R.L. Cohen (Academic Press, New York, 1965) p. 263.

    Google Scholar 

  3. U. Wagner, F.E. Wagner and J. Riederer, in Proceedings of the 24th International Archaeometry Symposium, eds. J.S. Olin and M.J. Blackman (Smithsonian Institution Press, Washington, D.C., 1986), p. 129.

    Google Scholar 

  4. C.E. Weaver, J.M. Wampler and T.E. Pecuil, Science 156(1967)504.

    ADS  Google Scholar 

  5. P.J. Malden and R.E. Meads, Nature 215(1967)844.

    Google Scholar 

  6. I. Rozenson, E.R. Bauminger and L. Heller-Kallai, Amer. Miner. 64(1979)893.

    Google Scholar 

  7. S.A. Fysh, J.D. Cashion and P.E. Clark, Clays Clay Miner. 31(1983)285.

    Google Scholar 

  8. C. Janot, H. Gibert and C. Tobias, Bull. Soc. franç. Minér. Cristall. 96(1973)281.

    Google Scholar 

  9. D.A. Jefferson, M.J. Tricker and A.P. Winterbottom, Clays Clay Miner. 23(1975)355.

    Google Scholar 

  10. J. Iannicelli, Clays Clay Miner. 24(1976)64.

    Google Scholar 

  11. O.P. Mehra and M.L. Jackson, Clays Clay Miner. 7(1960)317.

    Google Scholar 

  12. W.B. Jepson, in Iron in Soils and Clay Minerals, eds. J.W. Stucki, B.A. Goodman and U. Schwertmann (D. Reidel, Dordrecht, 1988), p. 467.

    Google Scholar 

  13. K.J.D. MacKenzie, Clay Miner. 8(1969)151.

    Google Scholar 

  14. B.R. Angel, A.H. Cuttler, K.S. Richards and W.E.J. Vincent, Clays Clay. Miner. 25 (1977)381.

    Google Scholar 

  15. G.W. Brindley and M. Nakahira, J. Amer. Ceram. Soc. 42(1959)311.

    Google Scholar 

  16. R.E. Grim, Clay Mineralogy, 2nd edition (McGraw-Hill, New York, 1968), 596 p.

    Google Scholar 

  17. D.A. Holdridge and F. Vaughan, in The Differential Thermal Investigation of Clays, ed. R.C. MacKenzie (Mineralogical Society, London, 1957), p. 98.

    Google Scholar 

  18. R. Salazar, U. Wagner, F.E. Wagner and E. Murad, Radiochem. Radioanal. Lett. 59(1983) 299.

    Google Scholar 

  19. W.E. Brownell, J. Amer. Ceram. Soc. 41(1958)226.

    Google Scholar 

  20. Y. Maniatis, A. Simopoulos and A. Kostikas, J. Amer. Ceram. Soc. 64(1981)269.

    Google Scholar 

  21. C.M. Cardile, I.W.M. Brown and K.J.D. MacKenzie, J. Mater. Sci. Lett. 6(1987)357.

    Article  Google Scholar 

  22. T. Ericsson, R. Wäppling and K. Punakivi, Geol. Fören. Stockholm Förhandl. 99(1977)229.

    Google Scholar 

  23. J.M.D. Coey, Atomic Energy Rev. 18(1980)73.

    Google Scholar 

  24. W. Knorr, Ph.D. Thesis (Technische Universität München, 1984), 152 p.

  25. U. Wagner, W. Knorr, A. Forster, E. Murad, R. Salazar and F.E. Wagner, Hyp. Int. 41(1988)855.

    Google Scholar 

  26. N. Malathi, S.P. Puri and I.P. Saraswat, J. Phys. Soc. Japan 31(1971)117.

    Article  Google Scholar 

  27. A. Simopoulos, A. Kostikas, I. Sigalas, N.H. Gangas and A. Moukarika, Clays Clay Miner. 23(1975)393.

    Google Scholar 

  28. R. Bouchez, J.M.D. Coey, R. Coussement, K.P. Schmidt, M. van Rossum, J. Aprahamian and J. Deshayes, J. Phys. 35-C6(1974)541.

    Google Scholar 

  29. E. Murad and J.H. Johnston, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2, ed. G.J. Long (Plenum Publ. Co., New York, 1987), p. 507.

    Google Scholar 

  30. E. Murad, L.H. Bowen, G.J. Long and T.G. Quin, Clay Miner. 23(1988)161.

    Google Scholar 

  31. L. Heller-Kallai and I. Rozenson, Phys. Chem. Miner. 7(1981)223.

    Article  Google Scholar 

  32. L. Heller-Kallai and I. Rozenson, Clays Clay Miner. 28(1980)355.

    Google Scholar 

  33. B.A. Goodman and D.C. Bain, in Proceedings of the International Clay Conference 1978, eds. M.M. Mortland and V.C. Farmer (Elsevier Publ. Co., Amsterdam, 1979), p. 65.

    Google Scholar 

  34. C. Blaauw, G. Stoink and W. Leiper, J. Phys. 41-C1(1980)411.

    Google Scholar 

  35. S. Callière and S. Hénin, in The Differential Thermal Investigation of Clays, ed. R.C. MacKenzie (Mineralogical Society, London, 1957), p. 207.

    Google Scholar 

  36. E.E. Kohler, Habilitation Thesis (Technische Universität München, 1983), 175 p.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murad, E., Wagner, U. Pure and impure clays and their firing products. Hyperfine Interact 45, 161–177 (1989). https://doi.org/10.1007/BF02405878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405878

Keywords

Navigation