Skip to main content
Log in

The Mössbauer analysis of iron oxyhydroxides in soils of Earth and Mars

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Necessity of a comparative analysis of the available Mössbauer data on various types of soils on Earth and Mars is substantiated. The proposed techniques significantly expand methodical possibilities of the Mössbauer spectroscopy for an effective study of processes in the multicomponent natural objects. The Mössbauer data have been used for the first time to propose quantitative criteria for characterization of the formation of hydroxides in soils on Earth and Mars, as well as a parameter for estimating the differentiation of magnetic spherules into the extraterrestrial, technogenic, and endogenic types. The Mössbauer spectra show a satisfactory correlation with the genesis and transformation of the magnetically ordered minerals in natural systems of Earth and Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev, A.O., Genesis of iron oxide in the steppe zone soil, Extended Abstract of DSc (Biol.) Dissertation, Moscow: Moscow State Univ., 2010.

    Google Scholar 

  • Anshits, N.N., Bayukov, O.A., Eremin, E.V., et al., Mossbauer and magnetic studies of high-Fe energy ash samples, Fiz. Tverd. Tela, 2010, vol. 52, no. 6, pp. 1115–1119.

    Google Scholar 

  • Avakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for the Activation of Chemical Processes), Moscow: Nauka, 1986.

    Google Scholar 

  • Azarnova, L.A., Temnov, A.V., and Ozhogina, E.G., Typomorphic features of magnetite in iron ores of the calcareous skarn formation and their implication for estimating the quality of raw material: Case study of the Yun-Yagin deposit (Polar Ural), in Tipomorfnye mineraly i mineral’nye assotsiatsii—indikatory masshtabnosti prirodnykh i tekhnogennykh mestorozhdenii i kachestva rud (Typomorphic Minerals and Mineral Assemblages–Indicators of the Scale of Natural and Technogenic Deposits and Ore Grade), Yekaterinburg: IGG UrO RAN, 2008, pp. 3–6.

    Google Scholar 

  • Babanin, V.F., Timofeev, B.V., Shpil’kina, I.V., et al., State of iron and Febearing minerals in soils of Mali, Pochvovedenie, 1994, no. 7, pp. 85–90.

    Google Scholar 

  • Babanin, V.F., Trukhin, V.I., Karpachevskii, L.O., et al., Magnetizm pochv (Magnetism of Soils), Yaroslavl: YaGTU, 1995.

    Google Scholar 

  • Babanin, V.F., Vasil’ev, S.V., Zalutskii, A.A., et al., Tekhnologicheskie i ekologicheskie primeneniya messbauerovskoi spektroskopii (Technological and Ecological Applications of the Mossbauer Spectroscopy), Yaroslavl: YaGTU, 2011.

    Google Scholar 

  • Badyugov, D.D. and Raitala, I., Ablation spherules in the Sikhote-Alin meteorite and their genesis, Petrology, 2012, vol. 20, no. 6, pp. 520–528.

    Article  Google Scholar 

  • Bagin, V.I., Gendler, T.S., and Avilova, T.E., Magnetizm α-okislov i gidrookislov zheleza (Magnetism of iron α-oxides and hydroxides), Moscow: IFZ AN SSSR, 1988.

    Google Scholar 

  • Barenbaum, A.A., Galaktotsentricheskaya paradigma v geologii i astronomii (Galactocentric Paradigm in Geology and Astronomy), Moscow: Librokom, 2010.

    Google Scholar 

  • Bell, J.F., Squyres, S.W., Arvidson, R.E., et al., Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum, Science, 2004, vol. 306, pp. 1703–1709.

    Article  Google Scholar 

  • Belov, K.P., Electron processes in magnetite (“mysteries of magnetite”), Usp. Fiz. Nauk, 1993, vol. 163, no. 5, pp. 53–66.

    Article  Google Scholar 

  • Belozerskii, G.N., Messbauerovskaya spektroskopiya kak metod issledovaniya poverkhnosti (Mössbauer Spectroscopy as a Method for the Surface Study), Moscow: Energoatomizdat, 1990.

    Google Scholar 

  • Bengoa, J.F., Moreno, M.S., Marchetti, S.G., et al., Study of the Morin Transition in pseudocubic α-Fe2O3 particles, Hyperfine Interact., 2005, vol. 161, pp. 177–183.

    Article  Google Scholar 

  • Bharuth-Ram, K., Hart, R.J., and Gunnlaugsson, H.P., Fe mineralogy of rocks from the Vredefort impact structure investigated with Mossbauer spectroscopy, Hyperfine Interact., 2008, vol. 186, pp. 199–203.

    Article  Google Scholar 

  • Bridges, J.C. and Warren, P.H., The SNC meteorites: basaltic igneous processes on Mars, J. Geol. Soc., 2006, vol. 163, pp. 229–251.

    Article  Google Scholar 

  • Bronger, A., Ensling, J., Gutlich, P., et al., Rubification of terrae rossae in Slovakia: A Mossbauer effect study, Clays Clay Miner., 1983, vol. 31, no. 4, pp. 269–276.

    Article  Google Scholar 

  • Chalabov, R.I., Lyubutin, I.S., and Anokhina, L.K., A new method for determination of the cation distribution in two-lattice ferromagnetics based on the Mossbauer spectroscopy, Fiz. Tverd. Tela, 1981, vol. 23, no. 8, pp. 2431–2433.

    Google Scholar 

  • Chevrier, V. and Mathe, P.E., Mineralogy and evolution of the surface of Mars: A review, Planet. Space Sci., 2007, vol. 55, pp. 289–314.

    Article  Google Scholar 

  • Chevrier, V., Mathe, P.E., Rochette, P., et al., Magnetic study of an Antarctic weathering profile on basalt: implications for recent weathering on Mars, Earth Planet. Sci. Lett., 2006, vol. 244, pp. 501–514.

    Article  Google Scholar 

  • Chistyakova, N.I., Rusakov, V.S., Gubaidullina, T.V., et al., The Mossbauer studies of Fe–Mg tochilinites, Vestn. Mosk. Univ., Ser. Fiz. Astron., 2006, no. 2, pp. 58–61.

    Google Scholar 

  • Chuev, M.A., Effective method for the analysis of hyperfine structure of gammaresonance spectra using the Voigt profile, Dokl. Akad. Nauk, 2011, vol. 438, no. 6, pp. 747–751.

    Google Scholar 

  • Chuev, M.A., Multilevel relaxation model for description of the Mossbauer spectra of nanoparticles in the magnetic field, Zh. Eksp. Teor. Fiz., 2012, vol. 141, no. 4, pp. 698–722.

    Google Scholar 

  • Chuev, M.A., The mode of gammaresonance spectra of ferrimagnetic nanoparticles under conditions of metamagnetism, Pis’ma Zh. Eksp. Teor. Fiz., 2013, vol. 98, no. 8, pp. 523–528.

    Google Scholar 

  • Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al., Subsurface water and clay mineral formation during the early history of Mars, Nature, 2011, vol. 479, pp. 53–60.

    Article  Google Scholar 

  • Fairen, A.G., Chevrier, V., Abramov, O., et al., Noachin and more recent phyllosilicates in impact craters on Mars, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 27, pp. 12095–12100.

    Article  Google Scholar 

  • Gendler, T.S., Kuz’min, R.N., and Urazaeva, T.K., Issledovanie effekta Messbauera v gidrogetite, Kristallografiya, 1976, vol. 21, no. 4, pp. 774–781.

    Google Scholar 

  • Gendler, T.S., Ershova, L.S., Karpachevskii, L.O., et al., Formation of the coarsegrained hematite on the kaolinite surface, Dokl. Akad. Nauk, 1981, vol. 259, no. 1, pp. 199–204.

    Google Scholar 

  • Gindilis, L.M., Tsel’movich, V.A., and Shevelev, G.N., The dust component of the Chelyabinsk meteorite: Preliminary results, in Fizikokhimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle (Physicochemical and Petrophysical Studies in Earth Sciences), Moscow, 2013, pp. 78–81.

    Google Scholar 

  • Gipergennye okisly zheleza v geologicheskikh protsessakh (Hypergene Iron Oxides in Geological Processes), Moscow: Nauka, 1975, p. 206.

  • Goncharov, G.N., Ostanevich, Yu.M., and Tomilov, S.B., Study of the goethite–water system with the Mossbauer effect, in Prikladnaya yadernaya spektroskopiya (Applied Nuclear Spectroscopy), Moscow: Atomizdat, 1971, no. 2, pp. 47–50.

    Google Scholar 

  • Gorski, C.A. and Scherer, M.M., Determination of nano-particulate magnetite stoichiometry by Mossbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review, Am. Mineral., 2010, vol. 95, pp. 1017–1026.

    Article  Google Scholar 

  • Grachev, A.F., Korchagin, O.A., Tsel’movich, V.A., and Kollmann, Kh.A., Extraterrestrial dust and micrometeorites in the transitional clay layer at the Cretaceous–Paleogene interface in the Gams section (eastern Alps): Morphology and chemical composition, Fiz. Zemli, 2008, no. 7, pp. 42–57.

    Google Scholar 

  • Grebennikov, A.V., Endogenic spherules in Cretaceous–Paleogene ignimbrite complexes of the Yakutin volcan-otectonic structure (Primorye), Zap. Ross. Miner. O-va, 2011, part 105, no.3, pp. 56–68.

    Google Scholar 

  • Greeley, R. and Spudis, P.D., Volcanism on Mars, Rev. Geophys. Space Phys., 1981, vol. 19, no. 1, pp. 13–41.

    Article  Google Scholar 

  • Harry, Y. and McSween, Yg., SNC meteorites: Clues to Martian petrologic evolution?, Rev. Geophys. Space Phys., 1985, vol. 23, no. 4, pp. 391–416.

    Article  Google Scholar 

  • Hesse, J. and Robartsch, A., Model independent evaluation of overlapped Mössbauer spectra, J. Phys. E: Sci. Instrum., 1974, vol. 7, pp. 526–532.

    Article  Google Scholar 

  • http://www.mtholyoke.edu/courses/mdyar/database/ (Mars Mineral Spectroscopy Database

  • Jancik, D., Mashlan, M., Zboril, R., et al., A new fast type of Mossbauer spectrometer for the rapid determination of ironbearing minerals used in the paint industry, Czechosl. J. Phys., 2005, vol. 55, no. 7, pp. 803–811.

    Article  Google Scholar 

  • Khramov, D.A. and Polosin, A.V., Study of the temperature dependence of quadrupole shifts in 57Fe nuclei in hematite, Fiz. Tverd. Tela, 1983, vol. 25, no. 9, pp. 2769–2771.

    Google Scholar 

  • Klingelhofer, G., Evlanov, E.N., Zubkov, B.V., et al., Miniaturized Mossbauer spectrometer for the analysis of iron mineralogy on the Martian surface, M.:, Preprint of IKI RAN, 2003, no. Pr-2081.

    Google Scholar 

  • Klingelhofer, G., Morris, R.V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity’s Mossbauer spectrometer, Science, 2004, vol. 306, no. 5702, pp. 1740–1745.

    Article  Google Scholar 

  • Klingelhofer, G., DeGrave, E., Morris, R.V., et al., Mossbauer spectroscopy on Mars: goethite in the Columbia Hills at Gusev Crater, Hyperfine Interact., 2005, vol. 166, pp. 549–554.

    Article  Google Scholar 

  • Klingelhöfer, G., Morris, R.V., De Souza, Jr.P.A., et al., Two earth years of Mössbauer studies of the surface of Mars with MIMOS II, Hyperfine Interact., 2006, vol. 170, pp. 169–177.

    Article  Google Scholar 

  • Knudsen, J.M., Madsen, M.B., Olsen, M., et al., Mossbauer spectroscopy on the Mars/Why ?, Hyperfine Interact., 1991, vol. 68, pp. 83–94.

    Article  Google Scholar 

  • Korovushkin, V.V., Crystal chemistry of Fe–Sn minerals for solving problems in applied mineralogy (based on the Mossbauer spectroscopy data), Extended Abstract of DSc (Geol.–Miner.) Dissertation, Moscow: VIMS, 2003.

    Google Scholar 

  • Krupyanskii, Yu.F. and Suzdalev, I.P., Some features of magnetic properties of small α-Fe2O3 particles, Fiz. Tverd. Tela, 1975, vol. 17, no. 3, pp. 588–590.

    Google Scholar 

  • Kundig, W., Bommel, H., Constabaris, G., et al., Some properties of supported small α-Fe2O3 particles determined with the Mossbauer effect, Phys. Rev., 1966, vol. 142, no. 2, pp. 327–333.

    Article  Google Scholar 

  • Lyutoev, V.P., Lysyuk, A.Yu., Suetin, V.P., et al., Isomorphism of iron in the prehnite structure based on the Mossbauer spectroscopy data, Vest. Ural. Univ., 2007, no. 11, pp. 4–7.

    Google Scholar 

  • Lyutoev, V.P., Potapov, S.S., Isaenko, S.I., et al., Mineral’noe veshchestvo meteorite, Chelyabinsk: IKpogloshchenie, kombinatsionnoe rasseyanie i messbauerovskaya spektroskopiya 57Fe (Mineral Matter of the Chelyabinsk Meteorite: IR absorption, Combination Dispersion, and Mossbauer Spectroscopy of 57Fe), Vest. Ural. Univ., 2013, no. 7, pp. 2–9.

    Google Scholar 

  • Malysheva, T.V., Effekt Messbauera v geokhimii i kosmokhimii (The Mossbauer Effect in Geochemistry and Cosmochemistry), Moscow: Nauka, 1975.

    Google Scholar 

  • Marakushev, A.A., Space Petrology and the Planetary Evolution of the Solar System, Moscow Univ. Geol. Bull., 2007, no. 4, pp. 211–219.

    Article  Google Scholar 

  • Marakushev, A.A., Granovskii, L.B., Zinov’eva, N.G., et al., Kosmicheskaya petrologiya (Space Petrology), Moscow: Nauka, 2003.

    Google Scholar 

  • Messbauerovskaya spektroskopiya zamorozhennykh rastvorov (The Mossbauer Spectroscopy of Congealed Solutions), Moscow: Mir, 1998, p. 398.

  • Mischenko, I.N., Chuev, M.A., Cherepanov, V.M., and Polikarpov, M.A., Mossbauer spectroscopy for characterizing biodegradation of magnetic nanoparticles in a living organism, Hyperfine Interact., 2012, vol. 206, pp. 105–108.

    Article  Google Scholar 

  • Morin, F.J., Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium, Phys. Rev. Lett., 1950, vol. 78, pp. 819–820.

    Google Scholar 

  • Morozov, V.V., Dobrovol’skii, V.V., and Kasatkin, A.E., Study of the mineralogy of laterites in East Africa with the Mossbauer spectroscopy, Vestn. Mosk. Univ., Ser. Pochvoved., 1988, no. 2, pp. 68–75.

    Google Scholar 

  • Morris, R.V., Klingelhofer, G., Schroder, C., et al., Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfaterich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res., 2006, vol. 111, pp. 1–27.

    Google Scholar 

  • Morup, S. and Topsoe, H., Mossbauer studies of thermal excitations in magnetically ordered microcrystals, Appl. Phys., 1976, vol. 11, pp. 63–66.

    Article  Google Scholar 

  • Murad, E. and Schwertmann, U., Influence of Al substitution and crystal size on the room-temperature Mossbauer spectrum of hematite, Clays Clay Miner., 1986, vol. 34, no. 1, pp. 1–6.

    Article  Google Scholar 

  • Nininger, R.C. and Schroeer, D., Mossbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3, J. Phys. Chem. Solids, 1978, vol. 39, pp. 137–144.

    Article  Google Scholar 

  • Novikov, S.I., Lebedeva, E.M., Shtol’ts, A.K., et al., Distribution of cations in the mechanically synthesized magnetite, Fiz. Tverd. Tela, 2002, vol. 44, no. 1, pp. 119–127.

    Google Scholar 

  • Pecherskii, D.M., Kandinov, M.N., Markov, G.P., et al., Combination of thermomagnetic and microprobe studies of exterrestrial magnetic minerals: Information about the structure and evolution of planets, Elektr. Nauchn. Zh. “Issledovano v Rossii”, 2012, pp. 437–452. (htpp://zhurnal.ape.relarn.ru/articles/2012/032.pdf)

    Google Scholar 

  • Petrov, Yu.I., Fizika malykh chastits (Physics of Small Particles), Moscow: Nauka, 1982.

    Google Scholar 

  • Povitskii, V.A., Salugin, A.N., and Makarov, E.F., Defectness of hematite structure and Morin transition, Fiz. Tverd. Tela, 1975, vol. 17, no. 12, pp. 3649–3651.

    Google Scholar 

  • Povitskii, V.A., Salugin, A.N., Makarov, E.F., et al., The Mossbauer study of the hematite structure with a Cr dope, Fiz. Tverd. Tela, 1976, vol. 18, no. 6, pp. 1648–1651.

    Google Scholar 

  • Rodionov, D.S., The Mossbauer spectrometer for the analysis of mineralogy of iron on the Martian surface, Extended Abstract of PhD (Phys.–Math.) Dissertation, Moscow: IKI RAN, 2006.

    Google Scholar 

  • Rusakov, V.S., Messbauerovskaya spektroskopiya lokal’no neodnorodnykh sistem (The Mossbauer Spectroscopy of Locally Nonhomogeneous Systems), Almaty, 2000.

    Google Scholar 

  • Salugin, A.N., Povitskii, V.A., Filin, M.V., et al., Study of the process of spin reorientation in the (1–c)Fe2O3–cAl2O3 system with the Mossbauer spectroscopy, Fiz. Tverd. Tela, 1975, vol. 17, pp. 1806–1808.

    Google Scholar 

  • Schmidt, M.E., Farrand, W.H., Johnson, J.R., et al., Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration, Earth Planet. Sci. Lett., 2009, vol. 281, pp. 258–266.

    Article  Google Scholar 

  • Schröder, C., Klingelhöfer, G., Morris, R.V., et al., Extraterrestrial Mössbauer spectroscopy: more than 3 years of Mars exploration and developments for future missions, Hyperfine Interact., 2008, vol. 182, pp. 149–156.

    Article  Google Scholar 

  • Schwertmann, U., Occurrence and formation of iron oxides in various pedoenvironments, in Iron in Soil and Clay Minerals, Dordrecht: Reidel, 1988, pp. 267–308.

    Google Scholar 

  • Schwertmann, U. and Murad, E., The influence of aluminum on iron oxides: XIV. Al-substituted magnetite synthesized at ambient temperatures, Clays Clay Miner., 1990, vol. 38, no. 2, pp. 196–202.

    Article  Google Scholar 

  • Sed’mov, N.A., Magnetism of microparticles from the atmospheric fallouts, sedimentary rocks, and soils, Extended Abstract of PhD (Phys.–Math.) Dissertation, Moscow: Moscow State Univ., 1989.

    Google Scholar 

  • Sed’mov, N.A., Babanin, V.F., Morozov, V.V., et al., Magnetomineral properties of magnetite from different sedimentary rocks and sediments, Vest. Mosk. Univ., Phys. Astron., 2004, no. 1, pp. 59–65.

    Google Scholar 

  • Soldatova, E.F., Ivanov, A.V., Romanyuk, A.V., et al., Forms of iron compounds in dry steppe soils on ancient weathering crusts, Pochvovedenie, 1992, no. 7, pp. 25–36.

    Google Scholar 

  • Sorescu, M., Xu, T., Wise, A., et al., Studies on structural, magnetic and thermal properties of xFe2TiO4–(1–x)Fe3O4 (0 < x < 1) pseudo-binary system, J. Magnetism Magnet. Mater., 2012, vol. 324, pp. 1453–1462.

    Article  Google Scholar 

  • Tanako, H. and Kono, M., Mossbauer spectra of titanomagnetite: A reappraisal, J. Geomagn. Geoelectr., 1987, vol. 39, pp. 463–475.

    Article  Google Scholar 

  • Tarasova, E.D. and Tarasov, M.P., Magnetite from the Martinovo deposit (Perchinki area), Spisan. Blgarsk. Geol. Druzhestvo, 1992, vol. 43, no. 2, pp. 13–23.

    Google Scholar 

  • Van Cromphaut, C., de Resende, V.G., De Grave, E., et al., Characterisation of the magnetic iron phases in Clovis Class rocks in Gusev crater from the MER Spirit Mossbauer spectrometer, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 4814–4822.

    Article  Google Scholar 

  • Vandenberghe, R.E., De Grave, E., De Geyter, G., and Landuydt, C., Characterization of goethite and hematite in a Tunisian soil profile by Mossbauer spectroscopy, Clays Clay Miner., 1986, vol. 34, no. 3, pp. 275–280.

    Article  Google Scholar 

  • Vodyanitskii, Yu.N., Oksidy zheleza i ikh rol' v plodorodii pochv (Iron Oxides and Their Role in the Fertility of Soils), Moscow: Nauka, 1989.

    Google Scholar 

  • Vodyanitskii, Yu.N., Diagnostika pereuvlazhnennykh mineral’nykh pochv (Identification of Waterlogged Mineral Soils), Moscow: Dokuchaev Soil Inst. RASKhN, 2008.

    Google Scholar 

  • Wade, M.L., Agresti, D.G., Wdowiak, T.J., et al., A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: Lessons for Mars exploration, J. Geophys. Res, 1999, vol. 104, no. E4, pp. 8489–8507.

    Article  Google Scholar 

  • Webster, C.R., Mahaffy, P.R., Atreya, S.K., et al., Low upper limit to methane abundance on Mars, Science, 2013, vol. 342, no. 6156, pp. 355–357.

    Article  Google Scholar 

  • Wojnarowska, A., Galazka-Fridman, J., and Bakun-Czubarow, N., Weathering of Martian and Earth surface studied by Mossbauer spectroscopy, Hyperfine Interact., 2008, vol. 186, pp. 173–180.

    Article  Google Scholar 

  • Yen, A.S., Gellert, R., Schroder, C., et al., An integrated view of the chemistry and mineralogy of Martian soils, Nature, 2005, vol. 436, pp. 49–54.

    Article  Google Scholar 

  • Zalutskii, A.A. and Stepanov, E.G., Fizicheskie metody issledovaniya tverdofaznykh reagentov i katalizatorov (Physical Methods for the Study of Solid Phase Reagents and Catalyzers), Yaroslavl: YaGTU, 2005.

    Google Scholar 

  • Zalutskii, A.A., Kuz’min, R.N., and Pukhov, D.E., Study of Iron Compounds in the FeCl3–FeCl3nH2O—montmorillonite system. Dedicated to semicentenary of the discovery of Mossbauer effect, Zap. Ross. Miner. O-va, 2007, part 136, no. 7, pp. 214–232.

    Google Scholar 

  • Zalutskii, A.A., Sed’mov, N.A., Kuz’min, R.N., and Ivanov, A.V., Comparative Mossbauer analysis of iron compounds in Earth soils and some Martial soils, Izv. RAN. Ser. Fiz., 2010, vol. 74, no. 3, pp. 410–414.

    Google Scholar 

  • Zalutskii, A.A., Ivanov, A.V., Morozov, V.V., et al., Mössbauer analysis of iron compounds in the Earth’s soils and some soil from Mars, Dokl. Earth. Sci. 2011, vol. 441, no. 1, pp. 1526–1528.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zalutskii.

Additional information

Original Russian Text © A.A. Zalutskii, A.A. Zalutskaya, N.A. Sed’mov, R.N. Kuz’min, 2015, published in Litologiya i Poleznye Iskopaemye, 2015, No. 4, pp. 305–336.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalutskii, A.A., Zalutskaya, A.A., Sed’mov, N.A. et al. The Mössbauer analysis of iron oxyhydroxides in soils of Earth and Mars. Lithol Miner Resour 50, 270–298 (2015). https://doi.org/10.1134/S0024490215040069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490215040069

Keywords

Navigation