Journal of Materials Science

, Volume 11, Issue 11, pp 2061–2067 | Cite as

A new source of X-ray line broadening: inhomogeneous strains induced by uniform homogeneous temperature conditions in polyphase or non-cubic materials

  • Franklin H. Cocks
  • Stuart F. Cogan


Thermal strains may contribute to X-ray diffraction line broadening in both single-phase non-cubic and in polyphase cubic polycrystalline materials even under uniform temperature conditions. A method is developed for calculating the magnitude of these thermally induced strains directly from the measured diffraction peak profiles. Corrections for particle-size effects can be made readily if particle-size broadening is significant, and the thermal diffuse scattering (TDS) contribution to the diffracted intensity can be taken into account experimentally. By this method, the strains in a Mg-5 wt% Si alloy were found to be increased by as much as 35% by a 190° C temperature change. Even in the case of this relatively low melting point alloy, the TDS effect causes only a maximum of 15% error in these measured strain effects. The interpretation of these isothermally induced strains in terms of crystal anisotropy, grain morphology and orientation and the relative sizes of phases and grains is discussed.


Homogeneous Temperature Polycrystalline Material Thermal Strain Diffract Intensity Strain Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Boas andR. W. K. Honeycombe,Proc. Roy. Soc.186A (1946) 57.Google Scholar
  2. 2.
    Idem, ibid188A (1946/47) 427.Google Scholar
  3. 3.
    Idem, J. Inst. Metals73 (1946/47) 433.Google Scholar
  4. 4.
    G. A. Malygin andV. A. Likhachev,Zavodskaya Laboratoriya32 (3) (1966) 335.Google Scholar
  5. 5.
    V. A. Likhachev,Sov. Phys. Solid State3 (1961) 1330.Google Scholar
  6. 6.
    B. E. Warren andB. L. Averbach,J. Appl. Phys.21 (1950) 595.CrossRefGoogle Scholar
  7. 7.
    B. E. Warren,Prog. Met. Phys.8 (1959) 147.CrossRefGoogle Scholar
  8. 8.
    D. R. Chipman andA. Paskin,J. Appl. Phys.30 (1959) 1992.CrossRefGoogle Scholar
  9. 9.
    D. R. Chipman andC. B. Walker,Acta Cryst.A28 (1972) 572.Google Scholar
  10. 10.
    A. R. Stokes,Proc. Phys. Soc.61 (1948) 382.CrossRefGoogle Scholar
  11. 11.
    F. H. Cocks andS. F. Cogan,J. Appl. Cryst.8 (1975) 571.Google Scholar
  12. 12.
    R. S. Smith,IBM J. Res. and Dev.4 (1960) 205.CrossRefGoogle Scholar
  13. 13.
    G. B. Mitra andN. K. Misra,Acta Cryst.22 (1967) 454.CrossRefGoogle Scholar
  14. 14.
    G. B. Mitra andA. K. Chaudhuri,J. Appl. Cryst.7 (1974) 350.CrossRefGoogle Scholar
  15. 15.
    M. F. Bertaut,Compt. Rend. Acad. Sci. Paris228 (1949) 492.Google Scholar
  16. 16.
    B. E. Warren,Acta Cryst.8 (1955) 483.CrossRefGoogle Scholar
  17. 17.
    B. E. Warren, “X-Ray Diffraction” (Addison-Wesley, Reading, Mass., 1969).Google Scholar
  18. 18.
    A. Kidron andJ. B. Cohen,J. Appl. Cryst.6 (1973) 8.CrossRefGoogle Scholar
  19. 19.
    C. P. Gazzara, J. J. Stiglich, F. P. Meyer andA. M. Hansen,Adv. X-Ray Anal.12 (1968) 257.Google Scholar
  20. 20.
    A. B. Dayai,J. Phys. C. Solid State Phys.3 (1970) 2037.CrossRefGoogle Scholar
  21. 21.
    W. B. Whitten, P. L. Chung andG. C. Danielson,J. Phys. Chem. Solids26 (1965) 49.CrossRefGoogle Scholar
  22. 22.
    F. H. Cocks, C. N. Preece andH. W. King,Phys. Letters22 (1966) 287.CrossRefGoogle Scholar
  23. 23.
    M. Hansen, “Constitution of Binary Alloys” McGraw-Hill, New York, 1958).Google Scholar

Copyright information

© Chapman and Hall Ltd 1976

Authors and Affiliations

  • Franklin H. Cocks
    • 1
  • Stuart F. Cogan
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA

Personalised recommendations