Skip to main content
Log in

An evaluation of rate-controlling obstacles for low-temperature deformation of zirconium

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The low-temperature plastic flow of alpha-zirconium was studied by employing constantrate tensile tests and differential-stress creep experiments. The activation parameters, enthalpy and area, have been obtained as a function of stress for pure, as well as commercial zirconium. The activation area is independent of grain size and purity and falls to about 9b2 at high stresses. The deformation mechanism below about 700° K is found to be controlled by a single thermally activated process, and not a two-stage activation mechanism. Several dislocation mechanisms are examined and it is concluded that overcoming the Peierls energy humps by the formation of kink pairs in a length of dislocation is the rate-controlling mechanism. The total energy needed to nucleate a double kink is about 0.8 eV in pure zirconium and 1 eV in commercial zirconium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. S. Basinski,Phil. Mag. 4 (1959) 393.

    CAS  Google Scholar 

  2. A. Seeger, “Dislocations and Mechanical Properties of Crystals” (John Wiley: New York 1957) p. 243.

    Google Scholar 

  3. S. K. Mitra, P. W. Osborne, andJ. E. Dorn,Trans. AIME 221 (1961) 1206.

    CAS  Google Scholar 

  4. S. K. Mitra andJ. E. Dorn,ibid 226 (1963) 1015.

    Google Scholar 

  5. H. Conrad, “High Strength Materials” (John Wiley: New York, 1965) p. 436.

    Google Scholar 

  6. K. R. Evans andW. F. Flanagan,Phil. Mag. 17 (1968) 535.

    CAS  Google Scholar 

  7. H. Conrad, L. Hays, G. Schoeck, andH. Wiedersich,Acta Metallurgica 9 (1961) 367.

    Article  CAS  Google Scholar 

  8. Z. S. Basinski,Austral. J. Phys. 13 (1960) 284.

    CAS  Google Scholar 

  9. P. Lukac,Z. Metallk. 57 (1966) 559.

    CAS  Google Scholar 

  10. D. H. Sastry, Y. V. R. K. Prasad, andK. I. Vasu,Met. Trans. 1 (1970) 1827.

    CAS  Google Scholar 

  11. P. Lukac andZ. Trojanova,Z. Metallk. 58 (1967) 57.

    CAS  Google Scholar 

  12. D. H. Sastry, Y. V. R. K. Prasad, andK. I. Vasu,Acta Metallurgica 17 (1969) 1453.

    Article  CAS  Google Scholar 

  13. E. J. Rapperport andC. S. Hartley,Trans. AIME 218 (1960) 869.

    Google Scholar 

  14. R. W. Guard andJ. H. Keeler,Trans. ASM 49 (1957) 449.

    Google Scholar 

  15. D. H. Baldwin andR. E. Reed-Hill,Trans. AIME 242 (1968) 661.

    CAS  Google Scholar 

  16. D. G. Westlake,ibid 223 (1965) 368.

    Google Scholar 

  17. P. Soo andG. T. Higgins,Acta Metallurgica 16 (1968) 177, 187.

    Article  CAS  Google Scholar 

  18. P. Das Gupta andV. S. Arunachalam,J. Mater. Sci. 3 (1968) 271.

    Article  CAS  Google Scholar 

  19. D. Mills andG. B. Craig,Trans. AIME 242 (1968) 1881.

    Google Scholar 

  20. B. Ramaswami andG. B. Craig,ibid 239 (1967) 1226.

    CAS  Google Scholar 

  21. Y. V. R. K. Prasad, D. H. Sastry, andK. I. Vasu,J. Ind. Inst. Sci. 51 (1969) 377.

    CAS  Google Scholar 

  22. H. Conrad andH. Wiedersich,Acta Metallurgica08 (1960) 128.

    Article  Google Scholar 

  23. J. C. M. Li, “Dislocation Dynamics” (McGraw-Hill: New York, 1968) p. 87.

    Google Scholar 

  24. G. B. Gibbs,Phys. Stat. Solidi 10 (1965) 507.

    Article  Google Scholar 

  25. R. J. Arsenault,Acta Metallurica 14 (1966) 831.

    Article  CAS  Google Scholar 

  26. N. R. Risebrough andE. Teghtsoonian,Canad. J. Phys. 45 (1967) 591.

    CAS  Google Scholar 

  27. R. L. Fleischer,Acta Metallurgica 10 (1962) 835.

    Article  CAS  Google Scholar 

  28. Idem, J. Appl. Phys. 33 (1962) 3504.

    Article  CAS  Google Scholar 

  29. R. L. Fleischer andW. R. Hibbard, “Relation between the Structure and Mechanical Properties of Metals” (HMSO: London, 1963) p. 261.

    Google Scholar 

  30. H. Conrad,Canad. J. Phys. 45 (1967) 581.

    CAS  Google Scholar 

  31. J. Friedel, “Dislocations” (Pergamon Press: New York and London, 1964) p. 379.

    Google Scholar 

  32. J. Friedel, “Electron Microscopy and Strength of Crystals” (John Wiley: New York and London 1963) p. 605.

    Google Scholar 

  33. P. W. Flynn, J. D. Mote, andJ. E. Dorn,Trans. AIME 221 (1961) 1148.

    CAS  Google Scholar 

  34. J. E. Dorn, “Energetics in Dislocation Mechanics” UCRL-10455, (1963).

  35. J. E. Dorn andJ. B. Mitchell, “High Strength Materials” (John Wiley: New York and London 1965) p. 510.

    Google Scholar 

  36. A. Seeger,Phil. Mag. 1 (1956) 651.

    Google Scholar 

  37. A. Seeger, H. Donth, andF. Pfaff,Discuss. Faraday Soc. 23 (1957) 19.

    Article  Google Scholar 

  38. J. Weertman,Phys. Rev. 101 (1956) 1429.

    Article  CAS  Google Scholar 

  39. J. Lothe andJ. P. Hirth,Phys. Rev. 115 (1959) 543.

    Article  CAS  Google Scholar 

  40. A. Seeger andP. Schiller,Acta Metallurgica 10 (1962) 348.

    Article  CAS  Google Scholar 

  41. J. E. Dorn andS. Rajnak,Trans. AIME 230 (1964) 1052.

    Google Scholar 

  42. P. Guyot andJ. E. Dorn,Canad. J. Phys. 45 (1967) 983.

    Google Scholar 

  43. J. Weertman andJ. R. Weertman, “Elementary Dislocation Theory” (Macmillan: New York, 1964) p. 159.

    Google Scholar 

  44. B. Holmberg andT. Dagerhamn,Acta. Chem. Scand. 15 (1961) 919.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, D.H., Prasad, Y.V.R.K. & Vasu, K.I. An evaluation of rate-controlling obstacles for low-temperature deformation of zirconium. J Mater Sci 6, 332–341 (1971). https://doi.org/10.1007/BF02403101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403101

Keywords

Navigation