Skip to main content
Log in

Deformation Twinning in Zirconium: Direct Experimental Observations and Polycrystal Plasticity Predictions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deformation twinning was directly observed in three commercial zirconium alloy samples during split channel die plane-strain compression. One pair of samples had similar starting texture but different grain size distributions, while another pair had similar grain size distribution but different starting textures. Extension twinning was found to be more sensitive to the starting texture than to the grain size distribution. Also, regions of intense deformation near grain boundaries were observed. A hierarchical binary tree-based polycrystal plasticity model, implementing the Chin-Hosford-Mendorf twinning criterion, captured the experimentally observed twinning grains’ lattice orientation distribution, and the twin volume fraction evolution, provided the critical resolved shear stress for extension twinning, \( \tau_{0} , \) was assumed much larger than any of the values reported in the literature, based on the viscoplastic self-consistent model. A comparison of the models suggests that \( \tau_{0} \) obtained using the present model and the viscoplastic self-consistent models physically correspond to the critical stress required for twin nucleation, and twin growth, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986.

    Google Scholar 

  2. A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462, pp. 29–36.

    Article  Google Scholar 

  3. R.J. McCabe, E.K. Cerreta, A. Misra, G.C. Kaschner, and C.N. Tomé: Philos. Mag., 2006, vol. 86, pp. 3595–3611.

    Article  Google Scholar 

  4. H. Numakura and M. Koiwa: Metall. Sci. Technol., 1998, vol. 16, pp. 4–19.

    Google Scholar 

  5. S.G. Song and G.T. Gray: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2665–75.

    Article  Google Scholar 

  6. G.C. Kaschner, C.N. Tomé, I.J. Beyerlein, S.C. Vogel, D.W. Brown, and R.J. McCabe: Acta Mater., 2006, vol. 54, pp. 2887–96.

    Article  Google Scholar 

  7. K.L. Murty and I. Charit: Prog. Nucl. Energy, 2006, vol. 48, pp. 325–59.

    Article  Google Scholar 

  8. E. Tenckhoff: J. ASTM Int., 2005, vol. 2, pp. 1–26.

    Article  Google Scholar 

  9. R.J. McCabe, G. Proust, E.K. Cerreta, and A. Misra: Int. J. Plast., 2009, vol. 25, pp. 454–72.

    Article  Google Scholar 

  10. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  11. A.M. Garde, E. Aigeltinger, and R.E. Reed-Hill: Metall. Trans., 1973, vol. 4, pp. 2461–68.

    Article  Google Scholar 

  12. S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, P. Pant, G.K. Dey, D. Srivastav, R. Tewari, and S. Banerjee: Mater. Sci. Technol., 2010, vol. 26, pp. 104–14.

    Article  Google Scholar 

  13. J.F. Bingert, T.A. Mason, G.C. Kaschner, P.J. Maudlin, and G.T. Gray III: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 955–63.

    Article  Google Scholar 

  14. G.C. Kaschner and G.T. Gray III: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1997–2003.

    Article  Google Scholar 

  15. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–95.

    Article  Google Scholar 

  16. E. El-danaf, S.R. Kalidindi, and R.D. Doherty: Int. J. Plast., 2001, vol. 17, pp. 1245–65.

    Article  Google Scholar 

  17. S.R. Kalidindi: Int. J. Plast., 1998, vol. 14, pp. 1265–77.

    Article  Google Scholar 

  18. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier (Pergamon Materials Series), Elsevier, Amsterdam, 2007.

    Google Scholar 

  19. E. Tenckhoff: ASTM Spec. Tech. Publ., 1988, vol. 966, pp. 1–77.

    Google Scholar 

  20. A. Akhtar and A. Teghtsoonian: Acta Metall., 1971, vol. 19, pp. 655–63.

    Article  Google Scholar 

  21. S.K. Sahoo, V.D. Hiwarkar, A. Majumdar, I. Samajdar, P. Pant, G.K. Dey, D. Srivastav, R. Tiwari, and S. Banerjee: Mater. Sci. Eng. A, 2009, vol. 518, pp. 47–55.

    Article  Google Scholar 

  22. Y.T. Zhu, X.Z. Liao, X.L. Wu, and J. Narayan: J. Mater. Sci., 2013, vol. 48, pp. 4467–75.

    Article  Google Scholar 

  23. R.J. McCabe, I.J. Beyerlein, J.S. Carpenter, and N.A. Mara: Nat. Commun., 2014, vol. 3806, pp. 1–7.

    Google Scholar 

  24. J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerlein, and C.N. Tomé: Scripta Mater., 2009, vol. 61, pp. 903–6.

    Article  Google Scholar 

  25. A. Akhtar: Metall. Trans. A, 1975, vol. 6, pp. 1217–22.

    Article  Google Scholar 

  26. T.A. Mason, J.F. Bingert, G.C. Kaschner, S.I. Wright, and R.J. Larsen: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 949–54.

    Article  Google Scholar 

  27. P.E. Marshall, G. Proust, J.T. Rogers, and R.J. McCabe: J. Microsc., 2010, vol. 238, pp. 218–29.

    Article  Google Scholar 

  28. R. Kapoor, A. Sarkar, J. Singh, I. Samajdar, and D. Raabe: Scripta Mater., 2014, vol. 74, pp. 72–75.

    Article  Google Scholar 

  29. H. Francillette, B. Bacroix, M. Gasperini, and J.L. Bechade: Acta Mater., 1998, vol. 46, pp. 4131–42.

    Article  Google Scholar 

  30. G. Proust, C.N. Tomé, and G.C. Kaschner: Acta Mater., 2007, vol. 55, pp. 2137–48.

    Article  Google Scholar 

  31. G.Y. Chin, W.F. Hosford, and D.R. Mendorf: Proc. R. Soc. Lond., 1969, vol. 309, pp. 433–56.

    Article  Google Scholar 

  32. P. Van Houtte: Acta Metall., 1978, vol. 26, pp. 591–604.

    Article  Google Scholar 

  33. C.N. Tomé, R.A. Lebensohn, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, pp. 2667–80.

    Article  Google Scholar 

  34. U.F. Kocks, C.N. Tomé, and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, U.K., 1998.

    Google Scholar 

  35. T. Leffers and R.K. Ray: Prog. Mater. Sci., 2009, vol. 54, pp. 351–96.

    Article  Google Scholar 

  36. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 421–30.

    Article  Google Scholar 

  37. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp: Scripta Mater., 2010, vol. 63, pp. 827–30.

    Article  Google Scholar 

  38. T.R. Bieler, L. Wang, A.J. Beaudoin, P. Kenesei, and U. Lienert: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 109–22.

    Article  Google Scholar 

  39. J. Lind, S.F. Li, R. Pokharel, U. Lienert, A.D. Rollett, and R.M. Suter: Acta Mater., 2014, vol. 76, pp. 213–20.

    Article  Google Scholar 

  40. S. Panchanadeeswaran, R.D. Doherty, and R. Becker: Acta Mater., 1996, vol. 44, pp. 1233–62.

    Article  Google Scholar 

  41. N. Vanderesse, Ch. Desrayaud, S. Girard-Insardi, and M. Darrieulat: Mater. Sci. Eng. A, 2008, vol. 476, pp. 322–32.

    Article  Google Scholar 

  42. N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty, and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265–74.

    Article  Google Scholar 

  43. H. Paul, J.H. Driver, and W. Wajda: Mater. Sci. Eng. A, 2008, vol. 477, pp. 282–94.

    Article  Google Scholar 

  44. I. Samajdar, B. Verlinden, and P. Van Houtte: ISIJ Int., 1998, vol. 38, pp. 759–65.

    Article  Google Scholar 

  45. D. Chapelle and M. Darrieulat: Mater. Sci. Eng. A, 2003, vol. 347, pp. 32–41.

    Article  Google Scholar 

  46. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  47. R.A. Lebensohn and C.N. Tomé: Acta Met. Mater., 1993, vol. 41, pp. 2611–24.

    Article  Google Scholar 

  48. S. Mahesh: Int. J. Plast., 2009, vol. 25, pp. 752–67.

    Article  Google Scholar 

  49. I.J. Beyerlein and C.N. Tomé: Int. J. Plast., 2008, vol. 24, pp. 867–95.

    Article  Google Scholar 

  50. M. Darrieulat, J.-Y. Poussardin, R.-Y. Fillit, and Ch. Desrayaud: Mater. Sci. Eng. A, 2007, vol. 445–446, pp. 641–51.

    Article  Google Scholar 

  51. M.M. Nowell and S.I. Wright: Ultramicroscopy, 2005, vol. 103, pp. 41–58.

    Article  Google Scholar 

  52. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein: Introduction to Algorithms, 3rd ed., MIT press, Cambridge, 2009.

    Google Scholar 

  53. P.Van Houtte, S. Li, M. Seefeldt, and L. Delannay: Int. J. Plast., 2005, vol. 21, pp. 589–624.

    Article  Google Scholar 

  54. C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 3085–96.

    Article  Google Scholar 

  55. C. Tomé, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 1637–53.

    Article  Google Scholar 

  56. H. Honneff and H. Mecking: in Proc. 5th Int. Conf. Textures Mater., Springer, Berlin, 1978, pp. 265–75.

  57. G.Y. Chin, E.A. Nesbitt, and A.J. Williams: Acta Metall., 1966, vol. 14, pp. 467–76.

    Article  Google Scholar 

  58. S. Raveendra, A.K. Kanjarla, H. Paranjape, S.K. Mishra, S. Mishra, L. Delannay, I. Samajdar, and P. Houtte: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2113–24.

    Article  Google Scholar 

  59. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: J. Mech. Phys. Solids, 1992, vol. 40, pp. 537–69.

    Article  Google Scholar 

  60. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Acta Mater., 2010, vol. 58, pp. 1152–1211.

    Article  Google Scholar 

  61. A. Zeghadi, S. Forest, A.-F. Gourgues, and O. Bouaziz: Philos. Mag., 2007, vol. 87, pp. 1425–46.

    Article  Google Scholar 

  62. W.J. McG Tegart: Philos. Mag., 1964, vol. 9, pp. 339–41.

    Article  Google Scholar 

  63. P.G. Partridge: Met. Rev., 1967, vol. 12, pp. 169–94.

    Article  Google Scholar 

  64. M.L. Picklesimer: J. Electrochem. Soc., 1966, vol. 4, pp. 289–300.

    Google Scholar 

  65. J.L. Martin and R.E. Reed-Hill: Trans. Met. Soc. AIME, 1964, vol. 230, pp. 780–85.

    Google Scholar 

  66. E.J. Rapperport: Acta Metall., 1959, vol. 7, pp. 254–60.

    Article  Google Scholar 

  67. R.A. Lebensohn, M.I. Gonzalez, C.N. Tomé, and A.A. Pochettino: J. Nucl. Mater., 1996, vol. 229, pp. 57–64.

    Article  Google Scholar 

  68. E. Girard, R. Guillen, P. Weisbecker, and M. Francois: J. Nucl. Mater., 2001, vol. 294, pp. 330–38.

    Article  Google Scholar 

  69. D. Gloaguen, T. Berchi, E. Girard, and R. Guillén: Acta Mater., 2007, vol. 55, pp. 4369–79.

    Article  Google Scholar 

  70. L. Capolungo, I.J. Beyerlein, G.C. Kaschner, and C.N. Tomé: Mater. Sci. Eng. A, 2009, vol. 513–514, pp. 42–51.

    Article  Google Scholar 

  71. M. Barnett, M. Setty, and F. Siska: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2962–69.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Board of Research in Nuclear Science (BRNS) and by the National Facility of Texture and OIM, a DST-IRPHA facility at IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasambu Mahesh.

Additional information

Manuscript submitted March 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Mahesh, S., Kumar, G. et al. Deformation Twinning in Zirconium: Direct Experimental Observations and Polycrystal Plasticity Predictions. Metall Mater Trans A 46, 5058–5071 (2015). https://doi.org/10.1007/s11661-015-3085-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3085-z

Keywords

Navigation