Skip to main content
Log in

Compression fracture of unidirectional carbon fibre-reinforced plastics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of volume fraction and tensile strength of fibres, temperature and stress concentrators on the compression strength and fracture mode of unidirectional CFRP was studied. The cause of kinking is different for composites reinforced by low-(<3 GPa) and high-strength fibres. If fibre strength is high, the kink is initiated by composite splitting followed by fibre bend fracture in the tip of the split. In the case of low-strength fibres, kinking is initiated by compressive fracture of the fibres. The effect of stress concentrators on the CFRP compressive strength is described by linear fracture mechanics. In the presence of defects, fracture is a result of the emergence of splits near a hole. As the critical stress of splitting growth initiation reduces in proportion to the square root of the defect size, the Griffith criterion describes the composite compressive fracture. At elevated temperature, failure is caused by fibre buckling. The fracture band in this case is oriented perpendicular to the fibre direction. Carbon fibre compressive strength may be measured by the loop method. Bending a strand of carbon fibres glued to the elastic beam gives a fibre-controlled upper limit of the composite compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Dow andT. S. Gruntfest, “Determination of Most Needed Potentially Possible Improvements in Materials for Ballistic and Space Vehicles”, General Electric Co., Space Science Laboratory, TJS R 60 SD 389 (1960).

  2. A. L. Rabinovich, in “Proceedings of MPTI”, edited by V. Petzov (Oborongiz, Moscow, 1961) N7, p. 3.

    Google Scholar 

  3. M. R. Piggott, in “Developments in Reinforced Plastics”, Vol. 4, edited by G. Pritchard (Elsevier Applied Science, London, New York, 1984) p. 131.

    Google Scholar 

  4. N. L. Hancox,J. Mater. Sci. 10 (1975) 234.

    Article  CAS  Google Scholar 

  5. S. Kumar, W. W. Adams andT. E. Helminiak,J. Reinf. Plast. Compos. 7 (1988) 108.

    CAS  Google Scholar 

  6. I. Petker,SAMPE Q. 3 (1972) 7.

    CAS  Google Scholar 

  7. R. Diefendorf, in “Carbon Fibres and Their Composites”, edited by E. Fitzer (Springer-Verlag, Berlin, Tokyo, 1985) p. 62.

    Google Scholar 

  8. C. W. Weaver andJ. G. Williams,J. Mater. Sci. 10 (1975) 1323.

    Article  CAS  Google Scholar 

  9. T. V. Parry andA. S. Wronski,ibid. 17 (1982) 893.

    Article  CAS  Google Scholar 

  10. L. V. Puchkov, S. L. Bazhenov, A. M. Kuperman, A. A. Berlin andE. S. Zelenskii,Dokl. Akad. Nauk SSSR 284 (1985) 349.

    CAS  Google Scholar 

  11. P. D. Evins, Royal Aircraft Establishment Technical Report, no. 70007 (1970).

  12. E. M. deFerran andB. Harris,J. Compos. Mater. 4 (1970) 62.

    Google Scholar 

  13. R. L. Sierakowski, G. E. Newill, C. A. Ross andE. R. Jones,ibid. 5 (1971) 362.

    CAS  Google Scholar 

  14. L. B. Greszczhuk, in “Strength and Fracture of Composites”, Proceedings of the 2nd Soviet-American Symposium on Composites, March 1981, Bethlehem, Pennsylvania, edited by G. C. Sih and V. P. Tamuzh (Zinatne, Riga, 1983) p. 304 (in Russian). [American version, edited by G. C. Sih (Martinus Nijhoff, The Hague, 1981) p. 231.]

    Google Scholar 

  15. A. S. Argon, in “Treatise on Materials Science and Technology”, Vol. 1, edited by H. Liebowitz (Academic Press, New York, London, 1972) p. 106.

    Google Scholar 

  16. H. Hawthorne andE. Teghtsoonian,J. Mater. Sci. 10 (1975) 41.

    Article  CAS  Google Scholar 

  17. H. T. Hahn andM. M. Sohi,Compos. Sci. Technol. 27 (1986) 25.

    Article  CAS  Google Scholar 

  18. S. R. Allen,J. Mater. Sci. 22 (1987) 853.

    Article  CAS  Google Scholar 

  19. S. Kumar, W. W. Adams andT. E. Helminiak,J. Reinf. Plast. Compos. 7 (1988) 108.

    CAS  Google Scholar 

  20. T. Oshawa, M. Miwa, M. Kawade andE. Tsushima,J. Appl. Polym. Sci. 39 (1990) 1733.

    Article  Google Scholar 

  21. A. Kelly andW. R. Tison,J. Mech. Phys. Solids 14 (1966) 177.

    Article  CAS  Google Scholar 

  22. S. L. Bazhenov, V. V. Kozey andA. A. Berlin,J. Mater. Sci. 24 (1989) 4509.

    Article  CAS  Google Scholar 

  23. R. K. Klark andW. B. Lisagor, ASTM STP 734 (American Society for Testing and Materials, Philadelphia, PA, 1981) p. 34.

    Google Scholar 

  24. T. Hiramatsu, T. Higuchi andJ. Matsui, in “Looking Ahead for Materials and Processes” (Elsevier, Amsterdam, 1987) p. 1.

    Google Scholar 

  25. J. Matsui, S. Namura andY. Ishii,J. Jpn. Soc. Compos. Mater. 12 (1986) 11.

    Google Scholar 

  26. D. H. Woolstencroft, A. R. Curtis andR. I. Harescengh,Composites 12 (1981) 275.

    Article  CAS  Google Scholar 

  27. J. M. Tarnopolskii andT. J. Kinzis, “Methods of Reinforced Plastics Testing” (Nauka, Moscow, 1981) p. 263 (in Russ.).

    Google Scholar 

  28. D. Sinclair,J. Appl. Phys. 21 (1950) 380.

    Article  Google Scholar 

  29. W. R. Jones andJ. W. Johnson,Carbon 9 (1971) 645.

    Article  CAS  Google Scholar 

  30. J. H. Greenwood andP. G. Rose,J. Mater. Sci. 9 (1974) 1809.

    Article  CAS  Google Scholar 

  31. E. G. Guynn andW. L. Braydley,J. Compos. Mater. 23 (1989) 479.

    Google Scholar 

  32. M. E. Waddoups, J. R. Eisenmann andB. E. Kaminski,ibid. 5 (1971) 446.

    CAS  Google Scholar 

  33. J. W. Mar andK. J. Lin,ibid. 13 (1979) 278.

    CAS  Google Scholar 

  34. J. M. Wolla andJ. G. Goree,ibid. 21 (1987) 49.

    CAS  Google Scholar 

  35. A. A. Berlin, V. A. Topolkaraev andS. L. Bazhenov, in “Physical Aspects of Fracture and Deformation of Composite Materials”, edited by A. M. Leksovsky (FTI, Leningrad, 1987) p. 102.

    Google Scholar 

  36. M. D. Rhodes, M. M. Mikulas andP. E. McGowan,AIAA J. 22 (1984) 1283.

    Article  Google Scholar 

  37. H. T. Hahn, in Proceedings of the 6th International Conference on Composite Materials”, Vol. 1, edited by F. L. Matthews, N. C. R. Buskell, J. M. Hodgkinson and J. Morton, London, July 1987 (Elsevier Applied Science, London, New York, 1987) p. 269.

    Google Scholar 

  38. L. Shikhmonter, I. Eldror andB. Cina,J. Mater. Sci. 24 (1989) 167.

    Article  Google Scholar 

  39. V. V. Kobelev,Mech. Compos. Mater. (1988) 232.

  40. W. N. Reinolds andJ. V. Sharp,Carbon 12 (1974) 103.

    Article  Google Scholar 

  41. B. Budiansky,Comput. Struct. 16 (1983) 3.

    Article  Google Scholar 

  42. S. L. Bazhenov andV. V. Kozey,J. Mater. Sci. 26 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenov, S.L., Kozey, V.V. Compression fracture of unidirectional carbon fibre-reinforced plastics. J Mater Sci 26, 6764–6776 (1991). https://doi.org/10.1007/BF02402672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02402672

Keywords

Navigation