Skip to main content
Log in

The effect of glucose-6-phosphate isomerase genotype onin vitro specific activity andin vivo flux inMytilus edulis

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Four samples of the musselMytilus edulis were taken between 1984 and 1987 from Stony Brook, New York, and used to study the glucose-6-phosphate isomerase (GPI) polymorphism in this species.In vitro specific activity andin vivo flux measured in the same animals were found to be significantly correlated. A significant effect of GPI genotype on flux was observed in one of the samples; overall, significant evidence of effect of genotype on enzyme activity was also obtained. GPI activities of common genotypes tend to deviate less from the population mean than those of rare (frequency less than 5%) genotypes. This suggests the possibility that rare GPI genotypes are rare as a consequence of having biochemical properties that deviate from an optimum level and, therefore, having a lower fitness. In support of this hypothesis, we found in one of our samples that shell length is a concave function of GPI activity with an intermediate optimum activity level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquadro, C. F., Deese, S. F., Bland, M. M., Langley, C. H., and Laurie-Ahlberg, C. C. (1986). Molecular population genetics of the alcohol dehydrogenase gene region ofDrosophila melanogaster.Genetics 1141165.

    PubMed  CAS  Google Scholar 

  • Atkinson, D. E. (1977).Cellular Energy Metabolism and Its Regulation Academic Press, New York.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248.

    Article  PubMed  CAS  Google Scholar 

  • Cameselle, J. C., Sanchez, J. L., and Carrion, A. (1980). The regulation of glycolysis in the hepatopancreas of the sea musselMytilus edulis L.Comp. Biochem. Physiol. 65B95.

    CAS  Google Scholar 

  • Chambers, G. K., Wilks, A. V., and Gibson, J. B. (1984). Variation in the biochemical properties of theDrosophila alcohol dehydrogenase allozymes.Biochem. Genet. 22153.

    Article  PubMed  CAS  Google Scholar 

  • Corbin, K. W. (1977). Phosphoglucose isomerase polymorphism and natural selection in the sand crab,Emerita talpoida.Evolution 31331.

    CAS  Google Scholar 

  • Costa, R., Nigro, R., and Danieli, G. A. (1983). Esterase-6 allozymes: Biochemical studies of two common and one rare variant inDrosophila melanogaster.Biochem. Genet. 21191.

    Article  PubMed  CAS  Google Scholar 

  • Dean, A. M., Dykhuizen, D. E., and Hartl, D. L. (1986). Fitness as a function of betagalactosidase activity inEscherichia coli.Genet. Res. Camb. 481.

    CAS  Google Scholar 

  • Diehl, W. J., and Koehn, R. K. (1985). Multiple-locus heterozygosity, mortality, and growth in a cohort ofMytilus edulis.Mar. Biol. 88265.

    Article  Google Scholar 

  • Eanes, W. F., and Hey, J. (1986).In vivo function of rareG6pd variants from natural populations ofDrosophila melanogaster.Genetics 113679.

    PubMed  Google Scholar 

  • Ebberink, R. H. M., and de Zwaan, A. (1980). Control of glycolysis in the posterior adductor muscle of the sea musselMytilus edulis.J. Comp. Physiol. 137165.

    CAS  Google Scholar 

  • Fisher, R. A. (1944).Statistical Methods for Research Workers 9th ed., Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Freund, R. J., and Littell, R. C. (1981).SAS for Linear Models SAS Institute, Cary, N.C.

    Google Scholar 

  • Gillespie, J. H. (1976). A general model to account for enzyme variation in natural populations. II. Characterization of the fitness functions.Am. Nat. 110809.

    Article  Google Scholar 

  • Hall, J. G. (1985). Temperature-related kinetic differentiation of glucosephosphate isomerase alleloenzymes isolated from the blue mussel,Mytilus edulis.Biochem. Genet. 23705.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, D. L., Dykhuizen, D. E., and Dean, A. M. (1985). Limits of adaptation: The evolution of selective neutrality.Genetics 111655.

    PubMed  CAS  Google Scholar 

  • Hedges, L., and Olkin, I. (1985).Statistical Methods for Meta-Analysis Academic Press, New York.

    Google Scholar 

  • Hoffman, R. J. (1981a). Evolutionary genetics ofMetridium senile. I. Kinetic differences in phosphoglucose isomerase allozymes.Biochem. Genet. 19129.

    Article  Google Scholar 

  • Hoffman, R. J. (1981b). Evolutionary genetics ofMetridium senile. II. Geographic patterns of allozyme variation.Biochem. Genet. 19145.

    Article  Google Scholar 

  • Hoffman, R. J. (1985). Thermal adaptation and the properties of phosphoglucose isomerase allozymes from a sea anemone. In Gibbs, P. E. (ed.),Proceedings of the Nineteenth European Marine Biology Symposium Cambridge University Press, Cambridge, p. 505.

    Google Scholar 

  • Johnson, M. S. (1974). Comparative geographic variation inMenidia.Evolution 28607.

    Google Scholar 

  • Kacser, H., and Burns, J. A. (1981). The molecular basis of dominance.Genetics 97639.

    PubMed  CAS  Google Scholar 

  • Katz, J., and Rognstad, R. (1976). Futile cycles in the metabolism of glucose. In Horecker, B. L., and Stadtman, E. R. (eds.),Current Topics in Cellular Regulation Academic Press, New York, p. 237.

    Google Scholar 

  • Koehn, R. K., and Bayne, B. L. (1988). Towards a physiological and genetical understanding of the energetics of the stress response.Biol. J. Linn. Soc. 37157.

    Article  Google Scholar 

  • Koehn, R. K., and Gaffney, P. M. (1984). Genetic heterozygosity and growth rate inMytilus edulis.Mar. Biol. 821.

    Article  Google Scholar 

  • Koehn, R. K., and Williams, G. C. (1978). Genetic differentiation without isolation in the American eelAnguilla rostrata. II. Temporal stability of geographic patterns.Evolution 32624.

    Google Scholar 

  • Koehn, R. K., Milkman, R., and Mitton, J. B. (1976). Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue musselMytilus edulis.Evolution 302.

    Google Scholar 

  • Koehn, R. K., Zera, A. J., and Hall, J. G. (1983). Enzyme polymorphism and natural selection. In Nei, M. and Koehn, R. K. (eds.),Evolution of Genes and Proteins Sinauer Associates, Sunderland, Mass., p. 115.

    Google Scholar 

  • Koehn, R. K., Hall, J. G., Innes, D. J., and Zera, A. J. (1984). Genetic differentiation ofMytilus edulis in eastern North America.Mar. Biol. 79117.

    Article  Google Scholar 

  • Latter, B. D. H. (1975). Enzyme polymorphisms: Gene frequency distributions with mutation and selection for optimal activity.Genetics 79325.

    PubMed  CAS  Google Scholar 

  • Newsholme, E. A., and Start, C. (1973).Regulation in Metabolism John Wiley and Sons, New York.

    Google Scholar 

  • Nigro, L., Costa, R. Jayakar, S. D., and Zonta, L. (1985). Est-6 inDrosophila melanogaster: Effects of genetic composition, temperature and oviposition period on fitness in laboratory populations polymorphic for rare alleles.Heredity 5583.

    Google Scholar 

  • Peters, R. H. (1983).The Ecological Implications of Body Size Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Powers, D. A., and Place, A. R. (1978). Biochemical genetics ofFundulus heteroclitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B, and Pgm-A.Biochem. Genet. 16593.

    Article  PubMed  CAS  Google Scholar 

  • Rose, I. A. (1981). Chemistry of proton abstraction by glycolytic enzymes (aldolase, isomerases and pyruvate kinase).Phil. Trans. R. Soc. Lond. B 293131.

    CAS  Google Scholar 

  • Rose, I., and O'Connell, E. L. (1961). Intramolecular hydrogen transfer in the phosphoglucose isomerase reaction.J. Biol. Chem. 2363086.

    PubMed  CAS  Google Scholar 

  • Samollow, P. B., and Soulé, M. E. (1983). A case of stress related heterozygote superiority in nature.Evolution 37646.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. R. (1981).Biometry 2nd ed., H. W. Freeman, San Francisco.

    Google Scholar 

  • Watt, W. B. (1977). Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of Colias butterflies: Biochemical and population aspects.Genetics 87177.

    PubMed  CAS  Google Scholar 

  • Watt, W. B. (1983). Adaptation at specific loci. II. Demographic and biochemical elements in the maintenance of the Colias GPI polymorphism.Genetics 103691.

    CAS  PubMed  Google Scholar 

  • Watt, W. B., and Boggs, C. L. (1987). Allelic isozymes as probes of the evolution of metabolic organization. In Rattazzi, M. C., Scandalios, J. E., and Whitt, G. S. (eds.),Isozymes: Current Topics in Biological and Medical Research Alan R. Liss, New York, p. 27.

    Google Scholar 

  • Winshell, E. B., and Ertl, R. P. (1986). Micro vacuum distillation of radioactive liquids.Anal. Chem. 581599.

    Article  PubMed  CAS  Google Scholar 

  • Zaba, B. N., and Davies, J. I. (1980). Glucose metabolism in anin vitro preparation of the mantle tissue fromMytilus edulis L.Mar. Biol. Lett. 1235.

    CAS  Google Scholar 

  • Zar, J. H. (1974).Biostatistical Analysis Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The financial support provided to P.J.N.S. by the Luso-American Educational Commission (Fulbright Program), the Instituto Nacional de Investigacao Científica (Portugal), and the Faculdade de Ciências da Universidade de Lisboa during several stages of this research is gratefully acknowledged. Financial support from the Ministerio de Educatión y Ciencia (Spain) in the form of a postdoctoral Fulbright/MEC fellowship to M.S. is also gratefully acknowledged. Research was supported by National Science Foundation Grant BSR-8415060 to R.K.K. This is contribution No. 736 from the Program in Ecology and Evolution, State University of New York at Stony Brook.

On leave from Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande C2, Lisboa, Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, P.J.N., Koehn, R.K., Diehl, W.J. et al. The effect of glucose-6-phosphate isomerase genotype onin vitro specific activity andin vivo flux inMytilus edulis . Biochem Genet 27, 451–467 (1989). https://doi.org/10.1007/BF02399674

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02399674

Key words

Navigation