Skip to main content
Log in

Scaling limits in the second Painlevé transcendent

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

By the isomonodromy deformation method, the asymptotics of the general solution for the second Painlevé equation yxx=2y3+xy−α asReα→∞ are described for any x. The corresponding formulas are also presented. Bibliography: 23 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. P. Painleve, “Sur les equations differentielles du second ordre et d'ordre superiour dont l'integrale generale est uniforme,”Acta Math.,25, 1–86 (1902).

    MathSciNet  Google Scholar 

  2. P. Boutroux, “Recherches sur les transcendantes de M.Painleve et l'etude asymptotique des équations differentielles du second ordre,”Ann. Sci. Ecol. Norm. Super.,30, 255–376 (1913);31, 99–159 (1914).

    MATH  MathSciNet  Google Scholar 

  3. A. A. Kapaev and A. V. Kitaev, “The limit transition P2→P1,”Zap. Nauchn. Semin. LOMI,187, 75–87 (1991).

    MATH  Google Scholar 

  4. H. Douglas and S. Shenker, “Strings in less than one dimension,” Rutgers Preprint, RU-89-34 (1989).

  5. A. S. Fokas, A. R. Its, and A. V. Kitaev “Discrete Painleve equations and their appearance in quantum gravity,”Comm. Math. Phys.,142, 313–344 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. M. McCoy and Sh. Tang, “Connection formulae for Painleve V functions I,”Physica 19 D, 42–72 (1986).

    MathSciNet  Google Scholar 

  7. A. A. Kapaev, “Asymptotics of the solution of the first Painlevé equation,”Differents Uravn.,24, 1684–1695 (1988).

    MATH  MathSciNet  Google Scholar 

  8. N. Joshi and M. D. Kruskal, “An asymptotic approach to the connection problem for the first and the second Painleve equations,”Phys. Lett. A.,130, 129–137 (1988).

    Article  MathSciNet  Google Scholar 

  9. A. A Kapaev and A. V. Kitaev, “Connection formulae for the first Painleve transcendent in the complex domain,”Lett. Math. Phys.,27, 243–252 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Jimbo, T. Miwa, and K. Ueno, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients,”Physica 2 D, 306–352 (1981).

    MathSciNet  Google Scholar 

  11. H. Flaschka and A. C. Newell, “Monodromy- and spectrum-preserving deformations I.,”Comm. Math. Phys.,76, 65–116 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. R. Its and V. Yu. Novokshonov, “The isomonodromic deformation method in the theory of Painleve equations,”Lect. Notes Math.,1191, 1–313 (1986).

    Article  Google Scholar 

  13. A. A. Kapaev, “Global asymptotics of the second Painleve transcendent,”Phys. Lett. A,167, 356–362 (1992).

    Article  MathSciNet  Google Scholar 

  14. W. Wasow,Asymptotic Expansions for Ordinary Differential Equations, New York-London-Sidney (1965); F. W. J. Olver,Introduction to Asymptotics and Special Functions, New York-London (1974); M. V. Fedorjuk,Asymptotic Methods for Linear Ordinary Differential Equations, Moscow (1983).

  15. A. Erdélyi at al.,Higher Transcendental Functions, Vol. 2, McGraw-Hill (1953).

  16. V. Yu. Novokshenov, “Boutroux ansatz for the second Painlevé equation in the complex region,”Izv. AN SSSR, Ser. Math.,54, 1229–1251 (1990).

    MATH  Google Scholar 

  17. M. J. Ablowitz and H. Segur, “Exact linearisation of a Painleve transcendent,”Phys. Rev. Lett.,38, 1103–1106 (1977).

    Article  MathSciNet  Google Scholar 

  18. H. Airault, “Rational solutions of Painleve equations,”Stud. Appl. Math.,61, 31–53 (1979).

    MATH  MathSciNet  Google Scholar 

  19. A. A. Kapaev, “Global asymptotics of the first Painleve transcendent,” Preprint of the Inst. for Nonlinear Studies, INS 225, Clarkson Univ. (1993).

  20. A. A. Kapaev, “Irregular singular point of the second Painlevé function and the nonlinear Stokes phenomenon,”Zap. Nauchn. Semin. LOMI,187, 139–170 (1991).

    MATH  Google Scholar 

  21. A. A. Kapaev, “Scaling limits in the second Painleve transcendent,” Preprint Inst. for Nonlinear Studies, INS 223, Clarkson Univ. (1993).

  22. F. W. Warner,Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo (1983).

    MATH  Google Scholar 

  23. N. Joshi and M. D. Kruskal, “Connection results for the first Painleve equation,” Preprint School of Math. Univ. of New South Wales, Appl. Math., AM 91/4 (1991).

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 209, 1994, pp. 60–101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapaev, A.A. Scaling limits in the second Painlevé transcendent. J Math Sci 83, 38–61 (1997). https://doi.org/10.1007/BF02398460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02398460

Keywords

Navigation