Skip to main content
Log in

Quantum optics with very intense lasers

  • Quantum Optics
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Traditional concerns of Quantum Optics are coherence and saturation in bound-bound atomic transitions. For the first time these concerns are beginning to be appropriate to the bound-free and free-free spectroscopy of photo-electrons. Recent experimental evidence indicates that laser intensities in the rangeI=1012–1013 Watts/cm2 are sufficient to saturate a variety of multiphoton ionization processes and to create coherent above-threshold dressed electronic states. We first discuss the experimental background, and describe the laser parameters and experimental methods that have been used to obtain the data. Then we review a simple quantum optical description of ionization, and a classical theory of photon-electron interactions. Order-of-magnitude estimates of the ponderomotive potential are given and a relativistic critical field strength is derived. The results of a numerical integration of Schrödinger's equation for an electron being ionized are also shown, including the first theoretical evidence for above-threshold photo-electron peak shifts. The very recent development of terawatt Nd lasers is mentioned. Finally, it is suggested that nonlinear optical processes associated with high-intensity ionization should show new and interesting non-perturbative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Göpper-Mayer, Ann. Phys. 9 (1931) 273.

    Google Scholar 

  2. H.B. Bebb and A. Gold, Phys. Rev. 143 (1966) 1.

    Article  ADS  Google Scholar 

  3. P. Agostini, F. Fabre, G. Mainfray, G. Petite and N.K. Rahman, Phys. Rev. Letters 42 (1979) 1127.

    Article  ADS  Google Scholar 

  4. P. Kruit, J. Kimman, H.G. Muller and M.J. Van der Wiel, Phys. Rev. A 248 (1983) 28.

    Google Scholar 

  5. M. Crance and M. Aymar, J. Phys. B 13 (1980) 4129.

    Article  ADS  Google Scholar 

  6. Y. Gontier and M. Trahin, J. Phys. B 13 (1980) 4383.

    Article  ADS  Google Scholar 

  7. H.G. Muller, A. Tip and M.J. Van der Wiel, J. Phys. B 16 (1983) L679; M.H. Mittleman, J. Phys. B 17 (1984) L351; E. Fiordilino and M.H. Mittleman, J. Phys. B 18 (1985) 4425; A. Szöke, J. Phys. B 18 (1985) L427.

    Article  ADS  Google Scholar 

  8. R.R. Freeman, T.J. McIlrath, P.H. Bucksbaum and M. Bashkansky, Phys. Rev. Letters 57 (1986) 3156.

    Article  ADS  Google Scholar 

  9. L.W. Pan, L. Armstrong, Jr., and J.H. Eberly, J. Opt. Soc. Am. B 3 (1986) 1319.

    Article  ADS  Google Scholar 

  10. J. Javanainen and J.H. Eberly, Phys. Rev. Letters (submitted).

  11. C.K. Rhodes, private communication.

  12. For preliminary discussions, see Y. Gontier and M.A. Trahin, J. Quant. Electr. QE18 (1982) 1137; and P.L. Knight and B.W. Shore, J. Phys. B, 20 (1987) L413.

    Article  ADS  Google Scholar 

  13. J.H. Eberly,Progress in Optics, ed. E. Wolf, Vol. VII (North-Holland, Amsterdam, 1969).

    Google Scholar 

  14. See bibliography in ref..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberly, J.H. Quantum optics with very intense lasers. Hyperfine Interact 37, 33–47 (1987). https://doi.org/10.1007/BF02395703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02395703

Keywords

Navigation