Skip to main content

Tests of Classical and Quantum Electrodynamics with Intense Laser Fields

  • Chapter
Progress in Ultrafast Intense Laser Science

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 106))

  • 1274 Accesses

Abstract

In this chapter classical and quantum electrodynamics in intense laser fields are discussed. We focus on the interaction of relativistic electrons with strong laser pulses. In particular, by analyzing the dynamics of this interaction, we show how the peak intensity of a strong laser pulse can be related to the spectrum of the radiation emitted by the electron during the interaction itself. The discussed method could be used to accurately measure high peak laser intensities exceeding 1020 W/cm2 up to about 1023 W/cm2 with theoretical envisaged accuracies of the order of 10 %. Furthermore, we investigate non-linear quantum effects originating from the interaction of an electron with its own electromagnetic field in the presence of an intense plane wave. These “radiative corrections” modify the electron wave-function in the plane wave. The self-interaction changes, amongst others, the dynamics of the electron’s spin in comparison with the prediction of the Dirac equation. We show that this effect can be measured, in principle, already at intensities of the order of 1022 W/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter natural units ħ=c=1 are used (in some formulas ħ and c are restored for clarity). The magnetic field is rescaled with c and the charge is measured in Gaussian units (4πε 0=1). The electron mass and charge are denoted by m and e<0, respectively and this implies that α=e 2. In covariant expressions the space-time metric η μν with signature (1,−1,−1,−1) is used and μ =(/∂t,) is the four-derivative. Greek and Latin indices take the values (0,1,2,3) and (1,2,3), respectively. Contractions of four-vectors are denoted by a μ b μ =ab, scalar products of three-vectors by a i b i=ab and summation over repeated indices is understood. The symbol ε ijk denotes the totally anti-symmetric tensor in three dimensions with ε 123=1. Dirac gamma matrices are denoted by γ μ and . For a spinor u it is \(\bar{u}=u^{\dagger}\gamma ^{0}\) and for a matrix M in spinor space it is \(\bar{M}=\gamma^{0} M^{\dagger}\gamma^{0}\).

References

  1. W. Nakel, The elementary process of bremsstrahlung. Phys. Rep. 243, 317–353 (1994)

    Article  ADS  Google Scholar 

  2. V.N. Baier, V.M. Katkov, Concept of formation length in radiation theory. Phys. Rep. 409, 261–359 (2005)

    Article  ADS  Google Scholar 

  3. U.I. Uggerhøj, The interaction of relativistic particles with strong crystalline fields. Rev. Mod. Phys. 77, 1131–1171 (2005)

    Article  ADS  Google Scholar 

  4. R. Ruffini, G. Vereshchagin, S. Xue, Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1–140 (2010)

    Article  ADS  Google Scholar 

  5. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985)

    Book  Google Scholar 

  6. P.J. Mohr, G. Plunien, G. Soff, QED corrections in heavy atoms. Phys. Rep. 293, 227–369 (1998)

    Article  ADS  Google Scholar 

  7. S.G. Karshenboim, Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Phys. Rep. 422, 1–63 (2005)

    Article  ADS  Google Scholar 

  8. G. Baur, K. Hencken, D. Trautmann, Electron–positron pair production in ultrarelativistic heavy ion collisions. Phys. Rep. 453, 1–27 (2007)

    Article  ADS  Google Scholar 

  9. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  10. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)

    Article  ADS  Google Scholar 

  11. G.A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime. Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  12. Z. Wang, et al., High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett. 36, 3194–3196 (2011)

    Article  ADS  Google Scholar 

  13. J.H. Sung, S.K. Lee, T.J. Yu, T.M. Jeong, J. Lee, 0.1 Hz 1.0 PW Ti:sapphire laser. Opt. Lett. 35, 3021–3023 (2010)

    Article  ADS  Google Scholar 

  14. E.W. Gaul, et al., Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed nd:glass amplifier. Appl. Opt. 49, 1676–1681 (2010)

    Article  ADS  Google Scholar 

  15. V.V. Lozhkarev, et al., Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 4, 421–427 (2007)

    Article  ADS  Google Scholar 

  16. C.N. Danson, et al., Vulcan petawatt: design, operation and interactions at 5×1020 W cm−2. Laser Part. Beams 23, 87–93 (2005)

    Article  ADS  Google Scholar 

  17. Y. Kitagawa, et al., Prepulse-free petawatt laser for a fast ignitor. IEEE J. Quantum Electron. 40, 281–293 (2004)

    Article  ADS  Google Scholar 

  18. M. Aoyama, et al., 0.85-PW, 33-fs ti:sapphire laser. Opt. Lett. 28, 1594–1596 (2003)

    Article  ADS  Google Scholar 

  19. M.D. Perry, et al., Petawatt laser pulses. Opt. Lett. 24, 160–162 (1999)

    Article  ADS  Google Scholar 

  20. V. Yanovsky, et al., Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16, 2109–2114 (2008)

    Article  ADS  Google Scholar 

  21. A. Lyachev, et al., The 10PW OPCPA Vulcan Laser Upgrade, in High Intensity Lasers and High Field Phenomena (Optical Society of America, 2011). OSA Technical Digest (CD), p. HThE2

    Google Scholar 

  22. J.P. Chambaret, et al., The Extreme Light Infrastructure project ELI and its prototype APOLLON/ILE: “The Associated Laser Bottlenecks”, in Frontiers in Optics (Optical Society of America, 2009). OSA Technical Digest (CD), p. FMI2

    Google Scholar 

  23. D. Habs, T. Tajima, V. Zamfir, Extreme light infrastructure–nuclear physics (ELI–NP): new horizons for photon physics in Europe. Nucl. Phys. News 21, 23–29 (2011)

    Article  Google Scholar 

  24. F. Amiranoff, et al., ELI—Proposal for a European extreme light infrastructure, http://www.extreme-light-infrastructure.eu/pictures/ELI-scientific-case-id17.pdf

  25. http://www.hiperlaser.org

  26. Exawatt Center for Extreme Light Studies (XCELS), http://www.xcels.iapras.ru/img/XCELS-Project-english-version.pdf

  27. A.V. Korzhimanov, A.A. Gonoskov, E.A. Khazanov, A.M. Sergeev, Horizons of petawatt laser technology. Phys. Usp. 54, 9–28 (2011)

    Article  ADS  Google Scholar 

  28. W.P. Leemans, et al., GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696–699 (2006)

    Article  Google Scholar 

  29. J. Osterhoff, et al., Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. Phys. Rev. Lett. 101, 085002 (2008)

    Article  ADS  Google Scholar 

  30. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  31. T. Tajima, Laser acceleration and its future. Proc. Jpn. Acad. Ser. B, Phys. Biol. Sci. 86, 147–157 (2010)

    Article  Google Scholar 

  32. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012)

    Article  ADS  Google Scholar 

  33. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th edn. (Butterworth, Stoneham, 1987)

    Google Scholar 

  34. M. Abraham, Prinzipien der Dynamik des Elektrons. Ann. Phys. 315, 105–179 (1902)

    Article  Google Scholar 

  35. M. Abraham, Zur Theorie der Strahlung und des Strahlungsdruckes. Ann. Phys. 319, 236–287 (1904)

    Article  Google Scholar 

  36. P.A.M. Dirac, Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 167, 148–169 (1938)

    Article  ADS  Google Scholar 

  37. S.G. Rajeev, Exact solution of the Landau-Lifshitz equations for a radiating charged particle in the Coulomb potential. Ann. Phys. 323, 2654 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Strong signatures of radiation reaction below the radiation-dominated regime. Phys. Rev. Lett. 102, 254802 (2009)

    Article  ADS  Google Scholar 

  39. A. Di Piazza, Exact solution of the Landau-Lifshitz equation in a plane wave. Lett. Math. Phys. 83, 305–313 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. O. Har-Shemesh, A. Di Piazza, Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering. Opt. Lett. 37, 1352–1354 (2012)

    Article  ADS  Google Scholar 

  41. A. Link, et al., Development of an in situ peak intensity measurement method for ultraintense single shot laser-plasma experiments at the Sandia Z petawatt facility. Rev. Sci. Instrum. 77, 10E723 (2006)

    Article  Google Scholar 

  42. S. Bahk, et al., Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29, 2837–2839 (2004)

    Article  ADS  Google Scholar 

  43. L.D. Landau, E.M. Lifshitz, Quantum Electrodynamics, 2nd edn. (Butterworth, Stoneham, 1982)

    Google Scholar 

  44. V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Russ. Laser Res. 6, 497–617 (1985)

    Article  Google Scholar 

  45. W.H. Furry, On bound states and scattering in positron theory. Phys. Rev. 81, 115–124 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. A.I. Nikishov, V.I. Ritus, Quantum Processes in the field of a plane electromagnetic wave and in a constant field. I. Sov. Phys. JETP 19, 529–541 (1964)

    MathSciNet  Google Scholar 

  47. L.S. Brown, T.W.B. Kibble, Interaction of intense laser beams with electrons. Phys. Rev. 133, 705–719 (1964)

    Article  ADS  Google Scholar 

  48. F. Mackenroth, A. Di Piazza, C.H. Keitel, Determining the carrier-envelope phase of intense few-cycle laser pulses. Phys. Rev. Lett. 105, 063903 (2010)

    Article  ADS  Google Scholar 

  49. D. Seipt, B. Kämpfer, Nonlinear Compton scattering of ultrashort intense laser pulses. Phys. Rev. A 83, 022101 (2011)

    Article  ADS  Google Scholar 

  50. F. Hebenstreit, A. Ilderton, M. Marklund, J. Zamanian, Strong field effects in laser pulses: the Wigner formalism. Phys. Rev. D 83, 065007 (2011)

    Article  ADS  Google Scholar 

  51. C. Bula, et al., Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116 (1996)

    Article  ADS  Google Scholar 

  52. D.L. Burke, et al., Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  53. H. Hu, C. Müller, C.H. Keitel, Complete QED theory of multiphoton trident pair production in strong laser fields. Phys. Rev. Lett. 105, 080401 (2010)

    Article  ADS  Google Scholar 

  54. A. Ilderton, Trident pair production in strong laser pulses. Phys. Rev. Lett. 106, 020404 (2011)

    Article  ADS  Google Scholar 

  55. F. Sauter, Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931)

    Article  ADS  Google Scholar 

  56. W. Heisenberg, H. Euler, Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714–732 (1936)

    Article  ADS  Google Scholar 

  57. V. Weisskopf, Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. XIV (1936)

    Google Scholar 

  58. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. E. Brezin, C. Itzykson, Pair production in vacuum by an alternating field. Phys. Rev. D 2, 1191–1199 (1970)

    Article  ADS  Google Scholar 

  60. N.B. Narozhnyi, A.I. Nikishov, Pair production by a periodic electric field. Sov. Phys. JETP 38, 427 (1974)

    ADS  Google Scholar 

  61. S.S. Bulanov, N.B. Narozhny, V.D. Mur, V.S. Popov, Electron-positron pair production by electromagnetic pulses. J. Exp. Theor. Phys. 102, 9–23 (2006)

    Article  ADS  Google Scholar 

  62. M. Ruf, G.R. Mocken, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Pair production in laser fields oscillating in space and time. Phys. Rev. Lett. 102, 080402 (2009)

    Article  ADS  Google Scholar 

  63. A. Di Piazza, E. Lötstedt, A.I. Milstein, C.H. Keitel, Barrier control in tunneling e +e photoproduction. Phys. Rev. Lett. 103, 170403 (2009)

    Article  ADS  Google Scholar 

  64. W. Dittrich, H. Gies, Probing the Quantum Vacuum (Springer, Berlin, 2000)

    Google Scholar 

  65. A. Di Piazza, A.I. Milstein, C.H. Keitel, Photon splitting in a laser field. Phys. Rev. A 76, 032103 (2007)

    Article  ADS  Google Scholar 

  66. E. Lundström, et al., Using high-power lasers for detection of elastic photon-photon scattering. Phys. Rev. Lett. 96, 083602 (2006)

    Article  ADS  Google Scholar 

  67. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Light diffraction by a strong standing electromagnetic wave. Phys. Rev. Lett. 97, 083603 (2006)

    Article  ADS  Google Scholar 

  68. B. King, A. Di Piazza, C.H. Keitel, A matterless double slit. Nat. Photonics 4, 92–94 (2010)

    Article  ADS  Google Scholar 

  69. B. King, A. Di Piazza, C.H. Keitel, Double-slit vacuum polarization effects in ultraintense laser fields. Phys. Rev. A 82, 032114 (2010)

    Article  ADS  Google Scholar 

  70. M. Marklund, P.K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  71. S. Meuren, A. Di Piazza, Quantum electron self-interaction in a strong laser field. Phys. Rev. Lett. 107, 260401 (2011)

    Article  ADS  Google Scholar 

  72. D.M. Volkov, Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Phys. 94, 250–260 (1935)

    Article  ADS  MATH  Google Scholar 

  73. W.E. Lamb, R.C. Retherford, Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947)

    Article  ADS  Google Scholar 

  74. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Quantum radiation reaction effects in multiphoton Compton scattering. Phys. Rev. Lett. 105, 220403 (2010)

    Article  Google Scholar 

  75. H.G. Hetzheim, C.H. Keitel, Ionization dynamics versus laser intensity in laser-driven multiply charged ions. Phys. Rev. Lett. 102, 083003 (2009)

    Article  ADS  Google Scholar 

  76. C. Smeenk, et al., Precise in-situ measurement of laser pulse intensity using strong field ionization. Opt. Express 19, 9336–9344 (2011)

    Article  ADS  Google Scholar 

  77. J. Gao, Laser intensity measurement by Thomson scattering. Appl. Phys. Lett. 88, 091105 (2006)

    Article  ADS  Google Scholar 

  78. J. Alda, Laser and Gaussian beam propagation and transformation, in Encyclopedia of Optical Engineering: Paraxial Optics (Dekker, New York, 2003)

    Google Scholar 

  79. Y.I. Salamin, G.R. Mocken, C.H. Keitel, Electron scattering and acceleration by a tightly focused laser beam. Phys. Rev. Spec. Top., Accel. Beams 5, 101301 (2002)

    Article  ADS  Google Scholar 

  80. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992)

    Google Scholar 

  81. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1998)

    Google Scholar 

  82. C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980)

    Google Scholar 

  83. L. Michel, A.S. Wightman, Covariant formalism describing the polarization of spin one-half particles. Phys. Rev. 98, 1190 (1955)

    Google Scholar 

  84. J.W. Meyer, Covariant classical motion of electron in a laser beam. Phys. Rev. D 3, 621–622 (1971)

    Article  ADS  Google Scholar 

  85. E.S. Sarachik, G.T. Schappert, Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 2738–2753 (1970)

    Article  ADS  Google Scholar 

  86. V. Bargmann, L. Michel, V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435–436 (1959)

    Article  ADS  Google Scholar 

  87. P.A.M. Dirac, Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392–399 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. R.A. Neville, F. Rohrlich, Quantum electrodynamics on null planes and applications to lasers. Phys. Rev. D 3, 1692–1707 (1971)

    Article  ADS  Google Scholar 

  89. F. Hebenstreit, A. Ilderton, M. Marklund, Pair production: the view from the lightfront. Phys. Rev. D 84, 125022 (2011)

    Article  ADS  Google Scholar 

  90. A. Ilderton, Lightfront DHW functions and strong field QED. Few-Body Syst. 52, 431–436 (2012)

    Article  ADS  Google Scholar 

  91. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer, Berlin, 1991)

    Book  Google Scholar 

  92. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Operator approach to quantum electrodynamics in an external field: the mass operator. Sov. Phys. JETP 40, 225–232 (1975)

    MathSciNet  ADS  Google Scholar 

  93. V.N. Baier, A.I. Milstein, Radiation effects in the field of an electromagnetic wave. Sov. Phys. Dokl. 21, 734 (1977)

    ADS  Google Scholar 

  94. S. Karsch, et al., The petawatt field synthesizer: a new approach to ultrahigh field generation. ASSP, WF1 (2008)

    Google Scholar 

  95. S. Escoffier, et al., Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry. Nucl. Instrum. Methods A 551, 563–574 (2005)

    Article  ADS  Google Scholar 

  96. SLAC-376, Final Focus Test Beam Project Design Report (Stanford Linear Accelerator Center, 1991)

    Google Scholar 

  97. V.A. Alexandrof, et al., Results of final focus test beam. SLAC-PUB-9961 (1995)

    Google Scholar 

  98. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  99. A. Di Piazza, A.I. Milstein, Quasiclassical approach to high-energy QED processes in strong laser and atomic fields. Phys. Lett. B 717, 224 (2012)

    Article  ADS  Google Scholar 

  100. R.E. Wagner, Q. Su, R. Grobe, Time resolved Compton scattering for a model fermion-boson system. Phys. Rev. A 82, 022719 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Di Piazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meuren, S., Har-Shemesh, O., Di Piazza, A. (2014). Tests of Classical and Quantum Electrodynamics with Intense Laser Fields. In: Yamanouchi, K., Paulus, G., Mathur, D. (eds) Progress in Ultrafast Intense Laser Science. Springer Series in Chemical Physics(), vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-00521-8_8

Download citation

Publish with us

Policies and ethics