Skip to main content
Log in

Actinide bioassays by ICPMS

  • Actinides in Biological and Environmental Systems
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ever-increasing sensitivity of ICPMS continues to expand the technique’s application in the field of health physics. Enhancements in sample introduction and instrument design over the last few years have resulted in improving the ICPMS detection limit from ∼10 ng/l to≤0.1 ng/l. This additional sensitivity provides greater flexibility in the analysis of long-lived radionuclides in biological fluids, and requires only minimal sample preparation of urine for uranium analysis; the described 3-minute abbreviated matrix separation provides detection limits that are comparable to or better than alpha counting. For urine samples tested having concentrations that exceed the accepted administrative limit for total uranium (0.2 μg/day), isotopic analysis by ICPMS (e.g., determining the presence of236U, or measuring appropriate uranium isotope ratios) provides a reliable indication of occupational exposure. Our laboratory also utilizes ICPMS in a study examining uranium dissolution rate classification of dust collected at the perimeter of a nuclear facility. Specific details regarding these and other health physics applications are featured, including our group’s participation in assisting the DOE with the evaluation of ICPMS as a cost-effective alternative to fission-track analysis for the routine determination of239Pu in urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Smith, E. J. Wyse, D. W. Koppenaal, J. Radioanal. Nucl. Chem., 160 (1992) 341.

    CAS  Google Scholar 

  2. B. G. Ting, D. C. Paschal, K. L. Caldwell, J. Anal. Atomic Spectrom, 11 (1996) 339.

    Article  CAS  Google Scholar 

  3. R. R. Ross, J. R. Noyce, M. M. Lardy, Radioact. Radiochem., 4 (1993) 25.

    Google Scholar 

  4. A. P. M. Heres, M. C. Noe, Nucl. Techn., 115 (1996) 146.

    CAS  Google Scholar 

  5. T. U. Probst, Fresenius J. Anal. Chem., 354 (1996) 782.

    CAS  Google Scholar 

  6. J. I. G. Alonso, D. Thoby-Schultzendorff, B. Giovanonne, L. Koch. J. Anal. Atomic Spectrom, 8 (1993) 673.

    Google Scholar 

  7. P. Twiss, R. J. Watling, D. Delev, Atomic Spectrosc. Jan/Feb (1994) 36.

    Google Scholar 

  8. Y. Igarashi, K. K. Chang, Y. Takaku, K. Shiraishi, Y. Masayoshi, N. Ikeda. Anal. Sci., 6 (1990) 157.

    CAS  Google Scholar 

  9. D. Guenther, H. P. Longerich, S. E. Jackson, Can. J. Appl. Spectrosc., 40(4) (1995) 111.

    Google Scholar 

  10. X. Chen, R. S. Houk, J. Anal. Atomic Spectrom., 10 (1995) 837.

    CAS  Google Scholar 

  11. D. R. Kalkwarf, NUREG/CR-0530, 1979.

  12. D. R. Kalkwarf, NUREG/CR-1428, 1979.

  13. D. R. Kalkwarf, NUREG/CR-1316, 1980.

  14. ICRP Task Group, Health Phys., 12 (1966) 173.

    Google Scholar 

  15. E. J. Wyse, D. R. Fisher, Radiation Prot. Dosim., 55 (1994) 199.

    CAS  Google Scholar 

  16. E. J. Wyse, D. R. Fisher, Department of Energy Publication CONF-9304128, 1993, E-15.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyse, E.J., MacLellan, J.A., Lindenmeier, C.W. et al. Actinide bioassays by ICPMS. J Radioanal Nucl Chem 234, 165–170 (1998). https://doi.org/10.1007/BF02389766

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02389766

Keywords

Navigation