Skip to main content
Log in

The role of nitric oxide in cardiac surgery

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

The release of nitric oxide (NO) from coronary endothelial cells is impaired following reperfusion; however, several experimental studies have found that it exerts a cardioprotective effect during myocardial ischemiareperfusion. Thus, attempts have been made to supplement NO production exogenously during reperfusion when endogenous NO release may be diminished. Conversely, other studies suggest that NO exacerbates reperfusion injury by inducing the production of peroxynitrite. NO has also been reported to provide beneficial effects as a selective pulmonary vasodilator to relieve pulmonary hypertension. A loss of NO-mediated relaxation caused by the dysfunction of endothelial cells is characteristic of intimal hyperplasia, and nitrosovasodilators have proven efficient against atherosclerotic coronary heart disease, which may be attributable to their antiplatelet effects as well as to vasodilation. Furthermore, protamine sulfate, which is rich inl-arginine, is thought to augment NO production by supplying exogenousl-arginine, or to act on endothelial cell receptors to stimulate the production of NO. This review summarizes the current role of NO in cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2018

    PubMed  CAS  Google Scholar 

  2. Jennings RB, Reimer KA, Steenbergen C (1986) Myocardial ischemia revisited: the osmolar load, membrane damage and reperfusion. J Mol Cell Cardiol 18:769–780

    PubMed  CAS  Google Scholar 

  3. Quillen JE, Selke FW, Brooks LA, Harrison DG (1990) Ischemiareperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries. Circulation 2:586–594

    Google Scholar 

  4. Johnson G, Tsao PC, Lefer AM (1991) Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit Care Med 19:244–252

    PubMed  Google Scholar 

  5. Siegfried MR, Erhardt J, Rider T, Ma XL, Lefer AM (1992) Cardioprotection of organic nitric oxide donors in myocardial ischemia-reperfusion. J Pharmacol Exp Ther 260:668–675

    PubMed  CAS  Google Scholar 

  6. Lefer DJ, Nakanishi K, Johnson WE, Vinten-Johansen J (1993) Antineutrophil and myocardial protection actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion in dogs. Circulation 88:2337–2350

    PubMed  CAS  Google Scholar 

  7. Lefer DJ, Nakanishi K, Vinten-Johansen J (1993) Endothelial and myocardial cell protection by a cystein-containing nitric oxide donor after myocardial ischemia and reperfusion. J Cardiovasc Pharmacol 22:S34-S43

    PubMed  CAS  Google Scholar 

  8. Weyrich AS, Ma X-L, Lefer LM (1992) The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation 86:279–288

    PubMed  CAS  Google Scholar 

  9. Nakanishi K, Zhao ZQ, Vinten-Johansen J, Hudspeth DA, McGee DS, Hammon JW Jr, Salem W (1995) Blood cardioplegia enhanced with nitric oxide donor SPM-5185 counteracts postischemic endothelial and ventricular dysfunction. J Thorac Cardiovasc Surg 103:1146–1154

    Google Scholar 

  10. Nakanishi K, Vinten-Johansen J, Lefer DJ, Fowler WC, McGee DS, Johnston WE (1992) Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol 263:H1650–1658

    PubMed  CAS  Google Scholar 

  11. Hiramatsu T, Forbess JM, Miura T, Mayer Jr JE (1995) Effects of L-arginine and L-nitro-arginine methyl ester on recovery of neonatal lamb hearts after cold ischemia. Evidence for an important role of endothelial production of nitric oxide. J Thorac Cardiovasc Surg 109:81–87

    PubMed  CAS  Google Scholar 

  12. Sato H, Zhao ZQ, McGee D, Williams MW, Hammon JW, Vinten-Johansen J (1995) Supplemental L-arginine during cardioplegic arrest and reperfusion avoids regional postischemic injury. J Thorac Cardiovasc Surg 110:302–314

    PubMed  CAS  Google Scholar 

  13. Amrani M, Chester AH, Jayakumar J, Schyns CJ, Yacoub MH (1995) L-Arginine reverses low coronary reflow and enhances postischaemic recovery of cardiac mechanical function. Cardiovasc Res 30:200–204

    Article  PubMed  CAS  Google Scholar 

  14. Engelman DT, Watanabe M, Engelman RM, Rousou JA, Flack JE, Deaton DW, Das DK (1995) Cardiopulmonary bypass, myocardial management, and support techniques. Constitutive nitric oxide release is impaired after ischemia and reperfusion. J Thorac Cardiovasc Surg 110:1047–1053

    PubMed  CAS  Google Scholar 

  15. Wanna FS, Obayashi DY, Young JN, DeCampli WM (1995) Simultaneous manipulation of the nitric oxide and prostanoid pathways reduces myocardial reperfusion injury. J Thorac Cardiovasc Surg 110:1054–1062

    PubMed  CAS  Google Scholar 

  16. Fukuda H, Sawa Y, Kadoba K, Taniguchi K, Shimazaki Y, Matsuda H (1995) Supplement of nitric oxide attenuates neutrophil-mediated reperfusion injury. Circulation 92:413–416

    CAS  Google Scholar 

  17. Schulz R, Wambolt R (1995) Inhibition of nitric oxide synthesis protect the isolated working rabbit heart from ischaemia-reperfusion injury. Cardiovasc Res 30:432–439

    Article  PubMed  CAS  Google Scholar 

  18. Patel VC, Yellon DM, Singh KJ, Neild GH, Woolfson RG (1993) Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Commun 194:234–238

    Article  PubMed  CAS  Google Scholar 

  19. Woolfson RG, Patel VC, Neild GH, Yellon DM (1995) Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism. Circulation 91:1545–1551

    PubMed  CAS  Google Scholar 

  20. Takeuchi K, McGowan FX, Danh H-C, Glynn P, Simplaceanu E, del Nido PJ (1995) Direct detrimental effects of L-arginine upon ischemia-reperfusion injury to myocardium. J Mol Cell Cardiol 27:1405–1414

    Article  PubMed  CAS  Google Scholar 

  21. Naseem SA, Kontos MC, Rao PS, Jesse RL, Hess ML, Kukreja RC (1995) Sustained inhibition of nitric oxide by NG-nitro-L-arginine improves myocardial function following ischemia/reperfusion in isolated perfused rat heart. J Mol Cell Cardiol 27:419–426

    PubMed  CAS  Google Scholar 

  22. Sellden H, Winberg P, Gustafsson L, Lundell B, Book K, Frostell C (1993) Inhalation of nitric oxide reduced pulmonary hypertension after cardiac surgery in a 3.2kg infant. Anesthesiology 78:577–580

    PubMed  CAS  Google Scholar 

  23. Berner M, Beghetti M, Ricou B, Rouge J, Prêtre R, Friedli B (1993) Relief of severe pulmonary hypertension after closure of a large ventricular septal defect using low dose inhaled nitric oxide. Intensive Care Med 19:75–77

    PubMed  CAS  Google Scholar 

  24. Haydar A, Mauriat P, Journois D, Pouard P, Safran D, Vouhé P (1992) Inhaled nitric oxide for postoperative pulmonary hypertension in patients with congenital heart defects. Lancet 340:1545

    Article  PubMed  CAS  Google Scholar 

  25. Miller OI, Celermajer DS, Deanfield JE, Macrae DJ (1994) Very-low-dose inhaled nitric oxide: A selective pulmonary vasodilator after operations for congenital heart disease. J Thorac Cardiovasc Surg 108:487–494

    PubMed  CAS  Google Scholar 

  26. Roberts JD, Lang P, Bigatello LM, Vlahakes GJ, Zapol WM (1993) Inhaled nitric oxide in congenital heart disease. Circulation 87:447–453

    PubMed  Google Scholar 

  27. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  28. DeBelder AJ, Radomski MW, Why HFJ, Richardson PJ, Bucknall CA, Salas E, Martin JF, Moncada S (1993) Nitric oxide synthase activities in human myocardium. Lancet 341:84–85

    Article  CAS  Google Scholar 

  29. Archer S (1993) Measurement of nitric oxide in biological models. FASEB J 7:349–360

    PubMed  CAS  Google Scholar 

  30. Moncada S (1992) The L-arginine: nitric oxide pathway. Acta Physiol Scand 145:201–227

    PubMed  CAS  Google Scholar 

  31. Estrada Gomez C, Martin C, Mondada S, Gonzalez C (1992) Nitric oxide mediates tumor necrosis factor-alfa cytotoxicity in endothelial cells. Biochem Biophys Res Commun 186:475–482

    Google Scholar 

  32. Bogle RG, Baydoun AR, Pearson CD, Moncada S, Mann GE (1992) L-arginine transport is increased in macrophages generating nitric oxide. Biochem J 284:15–18

    PubMed  CAS  Google Scholar 

  33. Bogle RG, Moncada S, Pearson CD, Mann GE (1992) Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial cell L-arginine transporter. Br J Pharmacol 105:768–770

    PubMed  CAS  Google Scholar 

  34. Flaherty JT (1989) Nitrate tolerance: A review of the evidence. Drug 37:523–550

    CAS  Google Scholar 

  35. Miller VM, Vanhoutte PM (1989) Relaxations to SIN-1, nitric oxide, and sodium nitroprusside in canine arteries and veins. J Cardiovasc Pharmacol 14:S67-S71

    PubMed  CAS  Google Scholar 

  36. Gerzer R, Drummer C, Karrenbrock B, Heim JM (1989) Inhibition of platelet activating factor-induced platelet aggregation by molsidomine, SIN-1, and nitrates in vitro and ex vivo. J Cardiovasc Pharmacol 14:S115-S119

    PubMed  CAS  Google Scholar 

  37. Schini VB, Bond R, Gao Y, Illiano S, Junquero DC, Mombouli JV, Nagao T, Smart F, Vanhoutte M (1993) The sydnonimine C87-3754 evokes endothelium-independent relaxations and prevents endothelium-dependent contractions in blood vessels of the dog. J Cardiovasc Pharmacol 22:S10-S16

    PubMed  CAS  Google Scholar 

  38. Stamler JS, Single DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    PubMed  CAS  Google Scholar 

  39. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for biologic activity of endothelium derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  40. Wennmalm A, Benthin G, Petersson AS (1992) Dependence of metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol 106:507–508

    PubMed  CAS  Google Scholar 

  41. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–140

    PubMed  CAS  Google Scholar 

  42. Node K, Kitakaze M, Yokoyama H, Imai K, Komamura K, Minamino T, Kosaka H, Sato H, Tada M, Inoue M, Hori M, Kamada T (1995) Evidence for nitric oxide production from human ischemic hearts. J Mol Cell Cardiol A:159

  43. Shultz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a calcium-independent nitric oxide synthase in the myocardium. Br J Pharmac 105:575–580

    Google Scholar 

  44. Shindo T, Ikeda U, Ohkawa F, Kawahara K, Yokoyama M, Shimada K (1995) Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovasc Res 29:813–819

    Article  PubMed  CAS  Google Scholar 

  45. Robbins RA, Hamel FG, Floreani AA, Gossman GL, Nelson KJ, Belenky S, Rubinstein I (1993) Bovine bronchil epithelial cells metabolize L-arginine to L-citrulline: Possible role of nitric oxide synthase. Life Sci 52:709–716

    Article  PubMed  CAS  Google Scholar 

  46. Furlong B, Henderson AM, Lewis MJ, Smith JA (1987) Endothelium derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90:687–692

    PubMed  CAS  Google Scholar 

  47. Sneddon JM, Vane JR (1988) Endothelium-derived relaxing factor reduce platelet adhesion to bovine endothelial cells. Proc Natl Acad Sci USA 85:2800–2804

    PubMed  CAS  Google Scholar 

  48. Brady AJB, Warren JB, Poor-Wilson PA, Williams TJ, Harding AS (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265:H176-H182

    PubMed  CAS  Google Scholar 

  49. Luscher TF, Raji L, Vanhoutte PM (1987) Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension 9:157–163

    PubMed  CAS  Google Scholar 

  50. Hishikawa K, Nakaki T, Suzuki H, Kato R, Saruta T (1993) Role of L-arginine-nitric oxide pathway in hypertension. J Hypertens 11:639–645

    PubMed  CAS  Google Scholar 

  51. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME (1992) Anti-atherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 90:1168–1172

    PubMed  CAS  Google Scholar 

  52. Harrison DG, Freiman PG, Armstrong ML, Marcus ML, Heistad DD (1987) Alterations of vascular reactivity in atherosclerosis. Circ Res 61 [Suppl]:74–80

    Google Scholar 

  53. Lefer AM, Sedar AW (1991) Endothelial alterations in hypercholesterolaemia and atherosclerosis. Pharmacol Res 23:1–12

    Article  PubMed  CAS  Google Scholar 

  54. Bucala R, Tracey KJ, Cerami A (1991) Advanced glycosylation endproducts quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest 87:432–438

    PubMed  CAS  Google Scholar 

  55. Chin JH, Azhar S, Hoffman BB (1992) Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest 89:10–18

    PubMed  CAS  Google Scholar 

  56. Drexler H, Hayoz D, Münzel T, Hornig B, Just H, Brunner HR, Zelis R (1992) Endothelial function in chronic congestive heart failure. Am J Cardiol 69:1596–1601

    Article  PubMed  CAS  Google Scholar 

  57. Archer SL, Cowan NJ (1991) Acetylcholine causes endothelium dependent vasodilation but does not stimulate nitric oxide production by rat pulmonary arteries or elevate endothelial cytosolic calcium concentrations. Circ Res 68:1569–1581

    PubMed  CAS  Google Scholar 

  58. Martin W, Smith J, Lewis MJ, Henderson AH (1988) Evidence the inhibitory factor extracted from bovine retractor penis is nitrite, whose activated derivative is stabilized nitric oxide. Br J Pharmacol 93:579–585

    PubMed  CAS  Google Scholar 

  59. Arroyo C, Kohno M (1991) Difficulties encountered in the detection of nitric oxide (NO) by spin trapping techniques. A cautionary note. Free Radic Res Commun 14:145–155

    PubMed  CAS  Google Scholar 

  60. Kelm M, Feelisch M, Spahr R, Piper HM, Noack E, Schrader J (1988) Quantitative and kinetic characterization of nitric oxide and EDRF release from cultured endothelial cells. Biochem Biophys Res Commun 154:237–244

    Article  Google Scholar 

  61. Schmidt HHW (1995) Determination of nitric oxide via measurement of nitrite and nitrate in culture media. Biochemica 2:22

    Google Scholar 

  62. Pearson PJ, Schaff HV, Vanhoutte PM (1990) Acute endothelium-dependent relaxations to aggregating platelets following reperfusion injury in canine coronary arteries. Circ Res 67(2):385–393

    PubMed  CAS  Google Scholar 

  63. Hashimoto K, Pearson PJ, Schaff HV, Cartier R (1991) Endothelial cell dysfunction after ischemic arrest and reperfusion: A possible mechanism of myocardial injury during reflow. J Thorac Cardiovasc Surg 102:668–694

    Google Scholar 

  64. Pearson PJ, Lin PJ, Schaff HV (1992) Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cause of vasospasm after cardiopulmonary bypass. J Thorac Cardiovasc Surg 103:1147–1154

    PubMed  CAS  Google Scholar 

  65. Tsao PS, Aoki N, Lefer DJ, Johnson G, Lefer AM (1990) Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Ciculation 82:1402–1412

    CAS  Google Scholar 

  66. Inauen ME, Granger DN, Meiringer CJ, Schelling ME, Granger HJ, Kvietys PR (1990) Anoxia-reoxygenation-induced, neutrophil-mediated endothelial cell injury: Role of elastase. Am J Physiol 28:H925-H931

    Google Scholar 

  67. Nilsson FN, Miller VM, Vanhoutte PM, McGregor CGA (1991) Methods of cardiac preservation after the function of the endothelium in porcine coronary arteries. J Thorac Cardiovasc Surg 102:923–930

    PubMed  CAS  Google Scholar 

  68. Thompson J, Hess M (1986) The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis. Prog Cardiovasc Dis 28:449–492

    PubMed  CAS  Google Scholar 

  69. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  Google Scholar 

  70. Pabla R, Buda AJ, Flynn DM, Blesse SA, Shin AM, Curtis MJ, Lefer DJ (1996) Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion. Circ Res 78:65–72

    PubMed  CAS  Google Scholar 

  71. Williams MW, Taft CS, Ramnauth S, Zhao Z-Q, Vinten-Johansen J (1995) Endogenous nitric oxide (NO) protects against ischaemia-reperfusion injury in the rabbit. Cardiovasc Res 30: 79–86

    Article  PubMed  CAS  Google Scholar 

  72. Matheis G, Sheeman MP, Buckberg GD, Haybean DM, Young HH, Ignarro LJ (1992) Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol 262:H616-H620

    PubMed  CAS  Google Scholar 

  73. Brown JM, Grosso MA, Tarada GJ, Whitman GJ, Banerjee A, White CW, Karren AH, Repine JE (1989) Endoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat heart. Proc Natl Acad Sci USA 86:2516–2520

    PubMed  CAS  Google Scholar 

  74. Morita K, Sherman MP, Buckberg GD, Ihnken K, Matheis G, Young HH, Ignarro LJ (1995) Studies of hypoxemic/reperfusion injury: without aortic clamping. Role of the L-arginine — nitric oxide pathway: The nitric oxide paradox. J Thorac Cardiovasc Surg 110:1200–1211

    PubMed  CAS  Google Scholar 

  75. Massey MF, Davies MG, Svendsen E, Klyachkin ML, Barber L, Hagen P-O (1993) Ketanserin inhibits experimental vein graft intimal hyperplasia. J Surg Res 54:530–538

    Article  PubMed  CAS  Google Scholar 

  76. Davies MG, Kim JH, Dalen H, Makhoul RG, Svensen E, Hagen P-O (1993) Ketanserin inhibits experimental vein graft intimal hyperplasia and preservation of nitric oxide-mediated relaxation by the nitric oxide precursor L-arginine. Surgery 116:557–568

    Google Scholar 

  77. Guo J, Milhoan KA, Tuan RS, Lefer AM (1994) Beneficial effect of SPM-5185, a cysteine-containing nitric oxide donor, in rat carotid artery intimal injury. Circ Res 75:77–84

    PubMed  CAS  Google Scholar 

  78. DeMeyer GRY, Bult H, Üstünes L, Kockx MM, Feelisch M, Herman AG (1995) Effect of nitric oxide donors on neointima formation and vascular reactivity in the collared carotid artery of rabbits. J Cardiovasc Pharmacol 26:272–279

    CAS  Google Scholar 

  79. Rich G, Murphy G, Roos C, Johns R (1993) Inhaled nitric oxide: selective pulmonary vasodilatation in cardiac surgical patients. Anesthesiology 78:1028–1035

    PubMed  CAS  Google Scholar 

  80. Pepke-Zaba J, Higenbottam T, Dinh-Zuan A (1991) Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 338:1173–1174

    PubMed  CAS  Google Scholar 

  81. Frostell C, Fractacci M-D, Wain JC, Jones R, Zapol WM (1991) Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstricton. Circulation 83:2038–2047

    PubMed  CAS  Google Scholar 

  82. Ignarro L (1989) Biological actions and properties of endothelial-derived nitric oxide formed and released from artery and vein. Circ Res 65:1–21

    PubMed  CAS  Google Scholar 

  83. Fratacci MD, Frostell CG, Chen TY, Wain, JC, Robinson DR, Zapol WM (1991) Inhaled nitrix oxide: a selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology 75:990–999

    PubMed  CAS  Google Scholar 

  84. Girard C, Lehot J, Pannetier J, Filley S, French P, Estanove S (1992) Inhaled nitric oxide after mitral valve replacement in patients with chronic pulmonary hypertension. Anesthesiology 77:880–883

    PubMed  CAS  Google Scholar 

  85. Journois D, Pouard P, Mauriat P, Malhère T, Vouhé P, Safran D (1994) Inhaled nitric oxide as a therapy for pulmonary hypertension after operations for congenital heart defects. J Thorac Cardiovasc Surg 107:1129–1135

    PubMed  CAS  Google Scholar 

  86. Hugod C (1979) Effect of exposure to 43 ppm nitric oxide and 3.6 ppm nitrogen dioxide on rabbit lung. Int Arch Occup Environ Health 42:159–167

    Article  PubMed  CAS  Google Scholar 

  87. Shuel FO (1967) Morbid anatomical changes in the lungs of dogs after inhalation of higher oxide of nitrogen during anesthesia. Br J Anaesth 39:413–424

    Google Scholar 

  88. Kinsella JP, Neish SR, Shaffer E, Abman SH (1992) Low-dose inhalational nitric oxide in persistant pulmonary hypertension of the newborn. Lancet 340:819–820

    Article  PubMed  CAS  Google Scholar 

  89. Pearson PJ, Evora PRB, Ayrancioglu K, Schaff HV (1992) Protamine releases endothelium-derived relaxing factor from systemic arteries: a possible mechanism of hypotension during heparin neutralization. Circulation 86:289–294

    PubMed  CAS  Google Scholar 

  90. Searle NR, Sahab P (1992) Endothelial vasomotor regulation in health and disease. Can J Anaesth 39:838–857

    PubMed  CAS  Google Scholar 

  91. Fung HL, Chung SJ, Bauer JA (1992) Biochemical mechanism of organic nitrate action. Am J Cardiol 70:4B-10B

    Article  PubMed  CAS  Google Scholar 

  92. McGregor M (1982) The nitrates and myocardial ischemia. Circulation 66:689–692

    PubMed  CAS  Google Scholar 

  93. Lichtenthal PR, Rossi EC, Louis G (1985) Dose-related prolongation of the bleeding time by intravenous nitroglycerin. Anesth Analg 64:30–33

    PubMed  CAS  Google Scholar 

  94. Armstrong PW, Moffat JA (1983) Tolerance to organic nitrates: clinical and experimental perspectives. Am J Med 74:74–84

    Article  Google Scholar 

  95. Selke FW, Tomanek RJ, Harrison DG (1991) L-Cystein selectively potentiates nitroglycerin-induced dilation of small coronary microvessels. J Pharmacol Exp Ther 258:365–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonami, Y. The role of nitric oxide in cardiac surgery. Surg Today 27, 583–592 (1997). https://doi.org/10.1007/BF02388212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02388212

Key Words

Navigation