Skip to main content
Log in

Whole body analysis of the knockout gene mouse model for cystic fibrosis using thermal and fast neutron activation analysis

  • Applications of Radioanalytical Methods to Biological and Clinical Systems
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A genetically engineered “knockout gene” mouse model for human cystic fibrosis (CF) has been utilized to study bone mineralization. In CF, the so-called cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride ion channel, is either absent or defective. To produce the animal model the murine CFTR gene has been inactivated producing CF symptoms in the homozygotic progeny. CF results in abnormal intestinal absorption of minerals and nutrients which presumably results in substandard bone mineralization. The objective of this study was to determine the feasibility of using whole-body thermal and fast neutron activation analysis to determine mineral and trace-element differences between homozygote controls (+/+) and CF (−/−), murine siblings. Gender-matched juvenile +/+ and −/− litter mates were lyophilized and placed in a BN capsule to reduce thermal-neutron activation and irradiated for 10 seconds at φfast ≈ 1·1013 n·cm−2·s−1 using the MURR pneumatic-tube facility. Phosphorus was measured via the31P15(n,α)28Al13 reaction. After several days decay, the whole-body specimens were re-irradiated in the same facility, but without thermal-neutron shielding, for 5 seconds and the gamma-ray spectrum was recorded at two different decay periods allowing measurement of77mSe,24Na,27Mg,38Cl,42K,49Ca,56Mn,66Cu and80Br from the corresponding radiative-capture reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Norvell, Current Health 2, 21(9) (1995) 22.

    Google Scholar 

  2. F. S. Collins, Science, 256 (1992) 774.

    CAS  Google Scholar 

  3. T. F. Boat, M. J. Welsh, A. L. Beaudet, Metabolic Basis of Inherited Disease,C. R. Scriver, A. L. Beaudet, W. S. Sly, D. Valle, J. B. Stansbury (Eds), McGraw-Hill Information Services Company, New York, NY, 1989, p. 2649.

    Google Scholar 

  4. M. J. Welsh, A. E. Smith, Sci. Am., 273(6) (1995) 52.

    CAS  Google Scholar 

  5. Progress in Cystic Fibrosis Research, Cystic Fibrosis Foundation, Nov., 1996.

  6. J. N. Snouwaert, K. K. Brigman, A. M. Latour, N. N. Malouf, R. C. Boucher, O. Smithies, B. H. Koller, Science, 257 (1992) 1083.

    CAS  Google Scholar 

  7. L. L. Clarke, B. R. Grubb, S. E. Gabriel, O. Smithies, B. Koller, R. C. Boucher, Science 257 (1992) 1125.

    CAS  Google Scholar 

  8. L. L. Clarke, B. R. Grubb, J. R. Yankaskas, C. U. Cotten, A. Mckenzie, R. C. Boucher, Proc. Natl. Acad. Sci. USA, 91 (2) (1994) 479.

    CAS  Google Scholar 

  9. M. P. Anderson, D. N. Sheppard, H. A. Berger, M. J. Welsh, Science, 257 (1992) 1083.

    Google Scholar 

  10. L. K. Bachrach, C. W. Loutit, R. B. Moss, Am. J. Med., 96 (1994) 27.

    Article  CAS  Google Scholar 

  11. F. Cua, Biol. Trace Elem. Res., 30 (1991) 277.

    CAS  Google Scholar 

  12. R. C. Henderdon, B. B. Specter, J. Pediatr., 125(2) (1994) 208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, M.M., Morris, J.S., Derenzy, B.A. et al. Whole body analysis of the knockout gene mouse model for cystic fibrosis using thermal and fast neutron activation analysis. J Radioanal Nucl Chem 236, 107–112 (1998). https://doi.org/10.1007/BF02386326

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02386326

Keywords

Navigation