Skip to main content
Log in

Dideoxynucleoside triphosphates inhibit a late stage of SV40 DNA replicationin vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The role of DNA polymerases in the replication of SV40 DNA was studied using a T-antigen-dependent assay supplemented with a human KB cell extract. Inhibition of DNA polymerase α by addition of aphidicolin or monoclonal antibodies prevented DNA synthesis, confirming the requirement for this enzyme in replication. The replication process was unaffected by ddTTP at a concentration (5 µM) inhibitory to DNA polymerases β and γ, however, higher concentrations of ddTTP (200 µM) caused an apparent accumulation of relaxed circular plasmid with a concomitant decrease in DNA synthesis. An analysis of this replication intermediate indicated that it was formed during the replication reaction and that the replicative cycle was nearly complete. A kinetic study of ddTTP inhibition strongly suggested DNA polymerase ε (PCNA-independent DNA polymerase δ) was the target of the inhibitor and that this enzyme functions during the final stages of DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kornberg A: DNA replication. J Biol Chem 263: 1–4, 1988

    CAS  PubMed  Google Scholar 

  2. Thommes P, Hubscher U: Eukaryotic DNA replication. Eur J Biochem 194: 699–712, 1990

    Article  CAS  PubMed  Google Scholar 

  3. Edenberg HJ, Anderson S, DePamphilis ML: Involvement of DNA polymerase α in simian virus 40 DNA replication. J Biol Chem 253: 3273–3280, 1978

    CAS  PubMed  Google Scholar 

  4. Miller MR, Ulrich RG, Wang TS-F, Korn D: Monoclonal antibodies against human DNA polymerase-α inhibit replication in permeabilized human cells. J Biol Chem 260: 134–138, 1985

    CAS  PubMed  Google Scholar 

  5. Burgers PMJ: Eukaryotic DNA polymerases α and δ: conserved properties and interactions, from yeast to mammalian cells. Prog Nucl Acids Res Mol Biol 37: 236–280, 1989

    Google Scholar 

  6. Bambera RA, Jessee CB: Properties of DNA polymerases δ and ε, and their roles in eukaryotic DNA replication. Biochim. Biophys. Acta 1088: 11–24, 1991

    Google Scholar 

  7. Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A: A third essential DNA polymerase in S. cerevisiae. Cell 62: 1143–1151, 1990

    Article  CAS  PubMed  Google Scholar 

  8. Syvaoja J, Suomensaati S, Nishida C, Goldsmith JS, Chui GSJ, Jain S, Linn S: DNA polymerases α, δ and ε: three distinct enzymes from HeLa cells. Proc Natl Acad Sci USA 87: 6664–6668, 1990

    CAS  PubMed  Google Scholar 

  9. Fry M, Loeb LA: Animal cell DNA polymerases, CRC Press, Boca Raton, FL, 1986

    Google Scholar 

  10. Hammond RA, McClung JK, Miller MR: Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N′-nitro-N-nitrosoguanidine. Biochem 29: 286–291, 1990

    CAS  Google Scholar 

  11. Krokan H, Schaffer P, DePamphilis ML: Involvement of eucaryotic deoxyribonucleic acid polymerase α and γ in the replication of cellular and viral deoxyribonucleic acid. Biochem 18: 4431–4443, 1979

    CAS  Google Scholar 

  12. Waqar MA, Evans MJ, Huberman JA: Effect of 2′,3′-dideoxythymidine-5′-triphosphate on HeLa cellin vitro DNA synthesis: evidence that DNA polymerase α is the only polymerase required for cellular DNA synthesis. Nucl Acids Res 5: 1933–1946, 1978

    CAS  PubMed  Google Scholar 

  13. Yamada K, Hanaoka F, Yamada M-A: Effects of aphidicolin and/or 2′,3′-dideoxythymidine on DNA repair induced in HeLa cells by four types of DNA-damaging agents. J Biol Chem 260: 10412–10417, 1985

    CAS  PubMed  Google Scholar 

  14. Dresler SL, Kimbro KS: 2′,3′-dideoxythymidine 5′-triphosphate inhibition of DNA replication and ultraviolet-induced DNA repair synthesis in human cells: evidence for involvement of DNA polymerase δ. Biochem 26: 2664–2668, 1987

    CAS  Google Scholar 

  15. Kelly TJ: SV40 DNA replication. J Biol Chem 263: 17889–17892, 1988

    CAS  PubMed  Google Scholar 

  16. Stillman B: Initiation of eukaryotic DNA replicationin vitro. Annu Rev Cell Biol 5: 197–245, 1989

    Article  CAS  PubMed  Google Scholar 

  17. Hurwitz J, Dean FB, Kwong AD, Lee S-H: Thein vitro replication of DNA containing the SV40 origin. J Biol Chem 265: 18043–18046, 1990

    CAS  PubMed  Google Scholar 

  18. Li JJ, Kelly TJ: Simian virus 40 DNA replicationin vitro. Proc Natl Acad Sci USA 81: 6973–6977, 1984

    CAS  PubMed  Google Scholar 

  19. Learned RM, Myers RM, Tjian R: Replication in monkey cells of plasmid DNA containing the minimal SV40 origin. ICN-UCLA Symp Mol Cell Biol 22: 555–566, 1981

    CAS  Google Scholar 

  20. Smale ST, Tjian R: T-antigen-DNA polymerase α complex implicated in simian virus 40 DNA replication. Mol Cell Biol 6: 4077–4087, 1986

    CAS  PubMed  Google Scholar 

  21. Tanaka S, Hu S-H, Wang TS-F, Korn D: Preparation and preliminary characterization of monoclonal antibodies against human DNA polymerase α. J Biol Chem 257: 8386–8390, 1982

    CAS  PubMed  Google Scholar 

  22. Fisher PA, Korn D: DNA polymerase-α. Purification and structural characterization of near homogeneous enzyme from human KB cells. J Biol Chem 252: 6528–6535, 1977

    CAS  PubMed  Google Scholar 

  23. McDonell MW, Simon MN, Studier FW: Analysis of restriction fragments of T7 DNA and determination of molecular weight by electrophoresis in neutral and alkaline gels. J Mol Biol 110: 119–146, 1977

    CAS  PubMed  Google Scholar 

  24. Oguro M, Suzuki-Hori C, Nagano H, Mano Y, Ikegami S: The mode of inhibitory action by aphidicolin on eukaryotic DNA polymerase α. Eur J Biochem 97: 603–607, 1979

    Article  CAS  PubMed  Google Scholar 

  25. Atkinson MR, Deutscher MP, Kornberg A, Russell AF, Moffatt JG: Enzymatic synthesis of deoxyribonucleic acid. XXXIV. Termination of chain growth by a 2′,3′-dideoxyribonucleotide. Biochem 8: 4897–4904, 1969

    CAS  Google Scholar 

  26. Decker RS, Yamaguchi M, Possenti R, DePamphilis ML: Initiation of simian virus 40 DNA replicationin vitro: aphidicolin causes accumulation of early-replicating intermediates and allows determination of the initial direction of DNA synthesis. Mol Cell Biol 6: 3815–3825, 1986

    CAS  PubMed  Google Scholar 

  27. Lee S-H, Ishimi Y, Kenny MK, Bullock P, Dean FB, Hurwitz J: An inhibitor of thein vitro elongation reaction of simian virus 40 DNA replication is overcome by proliferating-cell nuclear antigen. Proc Natl Acad Sci USA 85: 9469–9473, 1988

    CAS  PubMed  Google Scholar 

  28. Wold MS, Weinberg DH, Virshup DM, Li JJ, Kelly TJ: Identification of cellular proteins required for simian virus 40 DNA replication. J Biol Chem 264: 2801–2809, 1989

    CAS  PubMed  Google Scholar 

  29. Crute JJ, Wahl AF, Bambara RA: Purification and characterization of two new high molecular weight forms of DNA polymerase δ. Biochem 25: 26–36, 1986

    CAS  Google Scholar 

  30. Lee MYWT, Tan C-K, Downey KM, So AG: Further studies on DNA polymerase δ purified to homogeneity by a new procedure. Biochem 23: 1906–1913, 1984

    CAS  Google Scholar 

  31. Zahradka P: Probing DNA polymerase α with monoclonal antibodies. FEBS Lett 212: 259–262, 1987

    Article  CAS  PubMed  Google Scholar 

  32. Wobbe CR, Dean F, Weissbach L, Hurwitz J:In vitro replication of duplex circular DNA containing the simian virus 40 origin site. Proc Natl Acad Sci USA 82: 5710–5714, 1985

    CAS  PubMed  Google Scholar 

  33. Malkas LH, Hickey RJ, Li C, Pedersen N, Baril EF: A 21S enzyme complex from HeLa cells that functions in Simian virus 40 DNA replicationin vitro. Biochem 29: 6362–6374, 1990

    CAS  Google Scholar 

  34. Ariga H, Sugano S: Initiation of simian virus 40 DNA replicationin vitro. J Virol 48: 481–491, 1983

    CAS  PubMed  Google Scholar 

  35. Weaver DT, Fields-Barry SC, DePamphilis ML: The termination region for SV40 DNA replication directs the mode of separation for the two sibling molecules. Cell 41: 565–575, 1985

    Article  CAS  PubMed  Google Scholar 

  36. Sundin O, Varshavsky A: Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell 25: 659–669, 1981

    Article  CAS  PubMed  Google Scholar 

  37. Yang L, Wold MS, Li JJ, Kelly TJ, Lui LF: Roles of DNA topoisomerases in simian virus 40 replicationin vitro. Proc Natl Acad Sci USA 84: 950–954, 1987

    CAS  PubMed  Google Scholar 

  38. Snapka RM: Topoisomerase inhibitors can selectively interfere with different stages of simian virus 40 DNA replication. Mol Cell Biol 6: 4221–4227, 1986

    CAS  PubMed  Google Scholar 

  39. DiGiuseppe JA, Dresler SL: Bleomycin-induced DNA repair synthesis in permeable human fibroblasts: mediation of long-patch and short-patch repair by distinct DNA polymerases. Biochem 28: 9515–9520, 1989

    CAS  Google Scholar 

  40. Nishida C, Reinhard P, Linn S: DNA repair synthesis in human fibroblasts requires DNA polymerase δ. J Biol Chem 263: 501–510, 1988

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahradka, P. Dideoxynucleoside triphosphates inhibit a late stage of SV40 DNA replicationin vitro . Mol Cell Biochem 110, 65–73 (1992). https://doi.org/10.1007/BF02385007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385007

Key words

Navigation