Skip to main content
Log in

Evaluation of the “radical sink” hypothesis from a chemical-kinetic viewpoint

  • Proceedings of the PULS'97
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radicals produced in cellular systems are frequently “repaired” by thiols, but the sulphur-centred (thiyl) radical resulting has to “sink” its unpaired electron in other reactions. It has been suggested that superoxide is the major radical sink, via thiyl conjugation with thiolate and electron transfer to oxygen. It is argued here, from chemical kinetic data largely obtained by pulse radiolysis methods, that ascorbate probably provides the major radical sink when radicals are produced in most mammalian tissues at typical physiological pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alexander, A. Charlesby, in: Radiobiology Symposium 1954,Z. M. Bacq andP. Alexander (Eds), Butterworths, London, 1955.

    Google Scholar 

  2. G. E. Adams, G. S. McNaughton, B. D. Michael, in: The Chemistry of Ionization and Excitation,G. R. A. Johnson andG. Scholes (Eds), Taylor & Francis, London, 1967, p. 281.

    Google Scholar 

  3. R. L. Willson, Chem. Commun., (1970) 1425.

  4. C. C. Winterbourn, Free Radical Biol. Med., 14 (1993) 85.

    Article  CAS  Google Scholar 

  5. W. Koppenol, Free Radical Biol. Med., 14 (1993) 91.

    Article  CAS  Google Scholar 

  6. C. Chatgilialoglu, K.-D. Asmus (Eds), Sulfur-Centred Reactive Intermediates in Chemistry and Biology, Plenum Press, New York, 1990.

    Google Scholar 

  7. K.-D. Asmus, Methods Enzymol., 186 (1990) 168.

    CAS  Google Scholar 

  8. R. P. Mason, D. N. Ramakrishna Rao, Methods Enzymol., 186(B) (1990) 318.

    CAS  Google Scholar 

  9. M. D. Sevilla, D. Becker, M. Yan. Intern. J. Radiat. Biol., 57 (1990) 65.

    CAS  Google Scholar 

  10. D. Ross, K. Norbeck, P. Moldéus, J. Biol. Chem., 260 (1985) 15028.

    CAS  Google Scholar 

  11. P. Wardman, C. von Sonntag, Methods Enzymol., 251 (1995) 31.

    CAS  Google Scholar 

  12. P. Wardman, in: Biothiols in Health and Disease,L. Packer andE. Cadenas (Eds), Marcel Dekker, New York, 1995, p. 1.

    Google Scholar 

  13. L. G. Forni, J. Mönig, V. O. Mora-Arellano, R. L. Willson, J. Chem. Soc., Perkin Trans. 2, (1983) 961.

    Google Scholar 

  14. G. R. Buettner, Arch. Biochem. Biophys., 300 (1993) 535.

    Article  CAS  Google Scholar 

  15. W. A. Prütz, J. Butler, E. J. Land, Biophys. Chem., 49 (1994) 101.

    Article  Google Scholar 

  16. M. Tamba, P. O'Neill, J. Chem. Soc., Perkin Trans. 2 (1991) 1681.

    Google Scholar 

  17. J. Lunec, D. R. Blake, Free Radical Res. Commun., 1 (1985) 31.

    CAS  Google Scholar 

  18. D. Hornig, Ann. N.Y. Acad. Sci., 258 (1975) 103.

    CAS  Google Scholar 

  19. X. Zhang, N. Zhang, H.-P. Schuchmann, C. von Sonntag, J. Phys. Chem., 98 (1994) 6541.

    CAS  Google Scholar 

  20. M. Tamba, A. Torreggiani O. Tubertini, Radiat. Phys. Chem., 46 (1995) 567.

    Article  Google Scholar 

  21. L. Grierson, K. Hildenbrand, E. Bothe, Intern. J. Radiat. Biol., 62 (1992) 265.

    CAS  Google Scholar 

  22. P. Wardman, in: Glutathione Conjugation. Mechanisms and Biological Significance,H. Sies andB. Ketterer (Eds), Academic Press, London, 1988, p. 43.

    Google Scholar 

  23. M. Quintiliani, R. Badiello, M. Tamba, A. Esfandi, G. Gorin, Intern. J. Radiat. Biol., 32 (1977) 195.

    CAS  Google Scholar 

  24. B. H. J. Bielski, A. O. Allen, H. A. Schwarz, J. Am. Chem. Soc., 103 (1981) 3516.

    Article  CAS  Google Scholar 

  25. D. E. Cabelli, B. H. J. Bielski, J. Phys. Chem., 87 (1983) 1809.

    Article  CAS  Google Scholar 

  26. C. C. Winterbourn, D. Metodiewa, Arch. Biochem. Biophys., 314 (1994) 284.

    Article  CAS  Google Scholar 

  27. C. von Sonntag, H.-P. Schuchmann, Angew. Chem. Intern. Ed. Engl., 30 (1991) 1229.

    Google Scholar 

  28. H.-P. Schuchmann, C. von Sonntag, in: Peroxyl Radicals,Z. B. Alfassi (Ed.), Wiley, New York, 1997, p. 439.

    Google Scholar 

  29. C. von Sonntag, H.-P. Schuchmann, in: Peroxyl Radicals,Z. B. Alfassi (Ed.), Wiley, New York, 1997, p. 173.

    Google Scholar 

  30. S. Abramovitch, J. Rabani, J. Phys. Chem., 80 (1976) 1562.

    Article  CAS  Google Scholar 

  31. B. A. Jurkiewicz, G. R. Buettner, Photochem. Photobiol., 59 (1994) 1.

    CAS  Google Scholar 

  32. B. A. Jurkiewicz, G. R. Buettner, Photochem. Photobiol., 64 (1996) 918.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wardman, P. Evaluation of the “radical sink” hypothesis from a chemical-kinetic viewpoint. J Radioanal Nucl Chem 232, 23–27 (1998). https://doi.org/10.1007/BF02383706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02383706

Keywords

Navigation