Skip to main content

Advertisement

Log in

Intracellular free calcium and phosphatidyl inositol — 1,4,5 — triphosphate in bone cells cultured in a low calcium environment

  • Original Articles
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The movement of intracellular free calcium([Ca2+]i) and phosphatidyl inositol-1, 4, 5-triphosphate (IP3) was studied in bone cells cultured in a low-calcium environment. The [Ca2+]i was 98.0±10.2(n=6)nM/106 cells for the control group (bone cells cultured in control medium) and 21.3±2.8(n=6)nM/106 cells for the low Ca group (bone cells cultured in low Ca medium). After the addition of exogenous CaCl2 to the calibration solution, [Ca2+]i increased significantly more in the low Ca group than in the control group(p<0.01). The IP3 content/2×106 cells was 12.40 pmoles in the control group and less than 0.19 pmoles in the low Ca group. After the stimulation with phospholipase C (PLC), the IP3 content in the bone cells increased markedly more in the low Ca group than in the control group. These findings suggest that a low-calcium environment around cells and organsin vivo may inhibit the intracellular signal tranduction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yaeger, T. A., Hinrichsen, C. F. L. and Cohen, M. J.: Development of the response in rat incisor dentin to injected strontium and fluoride. Amer. J. Anat., 114, 255–272, 1964

    Article  CAS  PubMed  Google Scholar 

  2. Matsumoto, A.: Effect of strontium on the epiphyseal cartilage plate of rat tibiae-Histological and radiographic studies. Japan. J. Pharmacol.26, 675–681, 1976

    CAS  Google Scholar 

  3. Nagayama, M., Saburi, N., Oka, T., Matsumoto, A.: Endochondoral ossification of the condyle in rats on a strontium or low-calcium diet. J. Oral Maxillofac. Surg.43, 693–703, 1985

    CAS  PubMed  Google Scholar 

  4. Omdahl, J. L. and DeLuca, H. F.: Strontium induced rickets: Metabolic Basis. Science,174, 949–951, 1971

    CAS  PubMed  Google Scholar 

  5. Care, A. D., Bates, R. F. L., Swaminathan, R., Scanes, C. G., Peacock, M., Tolinson, S., and O' Riordan, J. C. H. (1975) in Calcium Regulating Hormones, Proceedings of the Fifth Parathyroid Conference (Talmage, RM, Owen, M., and Parsons, JA. eds) pp. 100–110, Armerican Elsevier New York.

    Google Scholar 

  6. Pento, J. T., Glick, S. M., Kagan, A., Gorfein, P. C.: The relative influence of calcium, strontium and magnesium on calcitonin secretion in the pig. Endocrinology94, 1176–1180, 1974

    CAS  PubMed  Google Scholar 

  7. Matsumoto, A., Taguchi, H., Hisada, Y.: Effect of a low-calcium environment on neonatal rat femora in culture. Toxic. in Vitro, 5, 51–62, 1991

    Google Scholar 

  8. Harrison, M and Fraser, R.: Bone structure and metabolism in calcium-deficient rats. J. Endocrinol.21, 197–205, 1960

    CAS  PubMed  Google Scholar 

  9. Salomon, C. D.: Osteoporosis following calcium deficiency in rats Calc. Tiss. Res. 8, 320–333, 1972

    CAS  Google Scholar 

  10. Avioli, L. V.: Calcium and osteoporosis. Annu. Rev. Nutr.4, 471–491, 1984

    Article  CAS  PubMed  Google Scholar 

  11. Fujita, T.: Calcium, Cells and Bone. Journal of Bone and Mineral Metabolism6., 1–2, 1988

    Article  Google Scholar 

  12. Praeger, F. C., Reinlib, L., Donowitz, M., Gilchrest. B. A.: [Ca2+]i independent mitogenesis in cultured human fibroblasts revealed by single cell microfluorimetry. Biochem, Biophys. Res. Commun.159, 862–870, 1989

    Article  CAS  Google Scholar 

  13. Gukovskaya, A. S., Pulido, H. A., Zinchenko, V. P. Inhibitors of arachidonic free calcium induced by the mitogen concanavalin A in rat thymocytes. FEBS LETT.244, 461–464, 1989

    Article  CAS  PubMed  Google Scholar 

  14. Bouchelouche, P. N., Hainau, B., Frederiksen, O.: Effect of BAY K 8644 on cytosolic free calcium in isolated rabbit gall-bladder epitherial cells. Cell Calcium,10, 37–46, 1989

    Article  CAS  PubMed  Google Scholar 

  15. Berridge, M. J.: Rapid accumulation of inositol triphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidyl inositol. Biochem. J.,212, 849–858, 1983

    CAS  PubMed  Google Scholar 

  16. Kato, R., Sasakawa, N.: Signal transducion and calcium homeostasis in stimulus-secretion coupling. Folia Phamacol. Japan.,93, 271–281, 1989 (in Japanese)

    CAS  Google Scholar 

  17. Tsien, R. Y., Pozzan, T. and Rink, T. J.: Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94, 325–334, 1982

    Article  CAS  PubMed  Google Scholar 

  18. Tsien, R. Y., Pozzan, T. and Rink, T. J.: T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature295, 68–71, 1982

    Article  CAS  PubMed  Google Scholar 

  19. Tsien, R. Y., Rink, T. J. and Poenie, M.: Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wave lengths. Cell Calcium6, 145–157, 1985

    Article  CAS  PubMed  Google Scholar 

  20. Sharpes, E. S. and MaCarl, R. L.: A high-performance liquid chromatographic method to measure32P-incorporation into phosphorylated metabolites in calculated cells. Anal. Biocem.,124, 421–424, 1982

    Google Scholar 

  21. Lowry, O. H., Rosebrough, H. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin-phenol reagent. J. Biol. Chem.93, 265–275, 1951

    Google Scholar 

  22. Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I.: Release of C a2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1, 4, 5-triphosphate. Nature,306, 67–69, 1983

    Article  CAS  PubMed  Google Scholar 

  23. Zagari, M., Stephens, M., Earp, H. S., Herman, B.: Relationship of cytosolic ion fluxes and protein kinase C activation to platelet-derived growth factor induced competence and growth in BALB/C-3T3 cells. J. Cell. Physiol 139, 167–174, 1989

    Article  CAS  PubMed  Google Scholar 

  24. Hill, S. E., Bleehen, S. S., Macneil, S.: 1α-25-dihydroxyvitamin D3 increase intracellular free calcium in murine B16 melanoma. Br. J. Dermatol.,120, 21–30, 1989

    CAS  PubMed  Google Scholar 

  25. Berridge, M. J. and Irvine, R. F.: Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (London), 312, 315–321, 1984

    Article  CAS  Google Scholar 

  26. Nishizuka, Y.: The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 308, 693–698, 1984

    Article  CAS  PubMed  Google Scholar 

  27. Vargas, S. L., Feyen, J. H. M., Raisz, L. G.: Effects of pertussis toxin in resorption of 19-day-old fetal rat long bones. Endocrinology,124, 2159–2165, 1989

    CAS  PubMed  Google Scholar 

  28. Yamaguchi, D. T.: Protein kinase C-activated calcium channel in the osteoblast-like clonal osteosarcoma cell line UMR-106. J. Biol. Chem.262: 14967–14973, 1987

    CAS  PubMed  Google Scholar 

  29. Hirofumi, U., Miyauchi, T., Ariki, M. and Takeda, M.: Phosphorylation of a type 2A protein phosphatase by cyclic AMP-dependennt protein kinase. Program & Abstract in 7th international conference on cyclic nucleotides, calcium, and protein phosphorylation, 1989, p142.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Matsumoto, A., Hisada, Y. Intracellular free calcium and phosphatidyl inositol — 1,4,5 — triphosphate in bone cells cultured in a low calcium environment. J Bone Miner Metab 10, 1–7 (1992). https://doi.org/10.1007/BF02383455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02383455

Key Words

Navigation