Skip to main content
Log in

Thermoelectric power of mixed electronic-ionic conductors III. Case of calcium titanate

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The primary purpose of the present work is the determination of the thermopower component related to electronic charge carriers for undoped calcium titanate. The second purpose of this work is establishment of the relationship between this thermopower component and the electronic component of electrical conductivity. An essential part of the present study includes the determination of the thermopower components corresponding to different charge carriers (electrons, electron holes and ions). The determination procedures are based on the following three models:

  • Symmetrical model. This model assumes consistency between thermopower and electrical conuctivity in terms of the n-p transition (this model assumes that minimum of electrical conductivity corresponds to the electronic component of the thermopower equal zero). It was shown that this model does not apply for CaTiO3.

  • The Heikes model. This model is based on Heikes formula and also hopping mechanism of the transport of electrons. It was shown that thermopower of CaTiO3 cannot be described by this model and, consequently, thermopower vs. electrical conductivity cannot be considered within the Jonker formalism.

  • General model. This model is based on a general thermopower equation for mixed conductors without any simplifying assumptions. Application of this model indicates that the electronic component of thermopower is not consistent with the minimum of electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Kinetic term

e:

Elementary charge [1.602×10−19 C]

E:

Energy [eV]

F:

Faraday constant [96500 C mol−1]

c:

Concentration [m−3]

J1 :

Flux [mol m−2s−1]

k:

Boltzmann constant [8.6167×10−5 eV K−1]

n:

Concentration of electrons [m−3]

N:

Density of states [m−3]

q:

Heat of transfer [J]

p:

Concentration of electron holes [m−3]

p(O2):

Oxygen partial pressure [Pa]

R:

Universal gas constant [8.3144 J mol−1 K−1]

s:

Partial molar entropy [J mol−1 K−1]

so :

Standard partial molar entropy [J mol−1 K−1]

s*:

Transported entropy [J mol−1 K−1]

S:

Thermopower (Seebeck coefficient) [V K−1]

So(O2):

Standard entropy of oxygen [J mol−1 K−1]

t:

Transference number

T:

Absolute temperature [K]

v:

Volume [m3]

μ:

Mobility [m2 V−1 s−1]

x:

Distance [m]

z:

Valency

Z:

Sum of deviation squares

η:

Electrochemical potential [eV]

\(\bar \mu \) :

Chemical potential [kJ mol−1], [eV]

σ:

Electrical conductivity [Θ−1m−1]

References

  1. N. Yamaoka, M. Masuyama, M. Fukui, Am. Cer. Soc. Bull.62, 698 (1983).

    CAS  Google Scholar 

  2. J.M. Herbert, in: Ceramic Dielectrics and Capacitors, “Electrocomponent Science Monographs”, Vol. 6, Gordon and Breach Publishers, New York, 1985, pp. 152, 226.

    Google Scholar 

  3. J. Nowotny, M. Rekas, in: Electronic Ceramic Materials, (J. Nowotny, Ed.) Trans Tech Publications, Zürich, 1992, pp. 89–92.

    Google Scholar 

  4. L.L. Hench, J.K. West, in: Principles of Electronic Ceramics, Wiley, New York, 1990, pp. 185, 237.

    Google Scholar 

  5. H. Iwahara, T. Esaka, T. Managahara, J. Appl. Electrochem.18, 173 (1988).

    Article  CAS  Google Scholar 

  6. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Part I, Ionics this issue.

  7. H-I. Yoo, J-H. Hwang, J. Phys. Chem. Solids53, 973 (1992).

    CAS  Google Scholar 

  8. H. Rickert, in: Electrochemistry of Solids, Springer-Verlag, Berlin, 1982, pp. 96–110.

    Google Scholar 

  9. J. Nowotny, M. Radecka, M. Rekas, S. Sugihara, W. Weppner, E.R. Vance, Ceramics International24, 571 (1998).

    Article  CAS  Google Scholar 

  10. L.A. Danyushkina, A.K. Demin, B.V. Zharaviev, Solid State Ionics116, 85 (1999).

    Google Scholar 

  11. T. Bak, J. Nowotny, C.C. Sorrell, J. Mater. Sci.: Mater. in Electronics, submitted.

  12. Barin, in: Thermochemical Data of Pure Substances, VCH, Weinheim, 1989, Part 2, p. 1093.

    Google Scholar 

  13. P.H. Sutter, in: Thermoelectricity, Chapter 7, Interscience, New York, 1961.

    Google Scholar 

  14. G.H. Jonker, Philips Res. Rep.23, 131 (1968).

    Google Scholar 

  15. E.K. Weise, I.A. Lesk, J. Chem. Phys.21, 801 (1953).

    Article  CAS  Google Scholar 

  16. G.A. Cox, R. H. Tredgold, Brit. J. Appl. Phys.18, 37 (1967).

    Article  CAS  Google Scholar 

  17. W.L. Gorge, R.E. Grace, J. Phys. Chem. Solids30, 881 (1969).

    Google Scholar 

  18. W.L. Gorge, R.E. Grace, J. Phys. Chem. Solids30, 889 (1969).

    Google Scholar 

  19. U. Balachandran, B. Odekrik, N.G. Eror, J. Solid State Chem.41, 185 (1982).

    Article  CAS  Google Scholar 

  20. U. Balachandran, N.G. Eror, Mater. Sci. Eng.54, 221 (1982).

    CAS  Google Scholar 

  21. U. Balachandran, N.G. Eror, J. Solid State Chem.43, 196 (1982).

    Google Scholar 

  22. U. Balachandran, B. Odekrik, N.G. Eror, J. Mater. Sci.17, 1656 (1982).

    CAS  Google Scholar 

  23. U. Balachandran, N.G. Eror, Solid State Comm.44, 1117 (1982).

    Google Scholar 

  24. U. Balachandran, N.G. Eror, Phys. Stat. Solidi (a)71, 179 (1982).

    CAS  Google Scholar 

  25. U. Balachandran, N.G. Eror, J. Mater. Sci.17, 1795 (1982).

    CAS  Google Scholar 

  26. U. Balachandran, B. Odekrik, N.G. Eror, J. Phys. Chem. Solids44, 231 (1983).

    CAS  Google Scholar 

  27. Z.Z. Yang, H. Yamada, G.R. Miller, Am. Ceram. Soc. Bull.64, 1550 (1985).

    CAS  Google Scholar 

  28. Burn, S.M. Neirman, N.E. Cipollim, J. Mat. Sci. Lett.4, 1152 (1985).

    Article  CAS  Google Scholar 

  29. T.R.N. Kutty, R. Vivekanandar, Mater. Lett.5, 79 (1987).

    Article  CAS  Google Scholar 

  30. H. Iwahara, T. Esake, T. Mangahara, J. Appl. Electrochem.18, 173 (1988).

    Article  CAS  Google Scholar 

  31. E.R. Vance, R.A. Day, Z. Zhang, B.D. Begg, C.J. Ball, M.G. Blackford, J. Solid State Chem.124, 77 (1996).

    Article  CAS  Google Scholar 

  32. K. Ueda, H. Yangi, H. Hosono, H. Kawazoe, Phys. Rev. B56, 12998 (1997).

    Article  CAS  Google Scholar 

  33. S. Xie, W. Lin, K. Wu, P.H. Yang, G.Y. Meng, S.S. Chen, Solid State Ionics118, 23 (1999).

    Article  CAS  Google Scholar 

  34. R.R. Heikes, in: Thermoelectricity, Chapter 4, Interscience, New York, 1961.

    Google Scholar 

  35. I.S. Austin, N.F. Mott, Adv. Phys.18, 41 (1969).

    Article  CAS  Google Scholar 

  36. H.F. Kay, P.C. Bailey, Acta Crystal10, 219 (1957).

    CAS  Google Scholar 

  37. R.R. Heikes, R.C. Miller, R. Mazelsky, Physica30, 1600 (1964).

    Article  CAS  Google Scholar 

  38. P.M. Raccah, J.B. Goodenough, Phys.Rev.155, 932 (1967).

    Article  CAS  Google Scholar 

  39. W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B62, 6869 (2000).

    Article  CAS  Google Scholar 

  40. H. Kamata, Y. Yonemura, J. Mizusaki, H. Tagawa, K. Naraya, T. Sasamoto, J. Phys. Chem. Solids56, 943 (1995).

    CAS  Google Scholar 

  41. J. Nowotny, M. Rekas, J. Am. Ceram. Soc.81, 67 (1998).

    CAS  Google Scholar 

  42. J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba, T. Hashimoto, Solid State Ionics132, 167 (2000).

    Article  CAS  Google Scholar 

  43. T. Matsura, J. Tabuchi, J. Mizusaki, S. Yamauchi, K. Fueki, J. Phys. Chem. Solids49, 1403 (1988).

    Google Scholar 

  44. T. Matsura, J. Tabuchi, J. Mizusaki, S. Yamauchi, K. Fueki, J. Phys. Chem. Solids49, 1409 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bak, T., Nowotny, J., Rekas, M. et al. Thermoelectric power of mixed electronic-ionic conductors III. Case of calcium titanate. Ionics 10, 177–187 (2004). https://doi.org/10.1007/BF02382814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02382814

Keywords

Navigation