Skip to main content
Log in

Mg substituted LiCoO2 for reversible lithium intercalation

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A series of divalent non-transition metal, especially Mg doped LiCoO2 solid solutions with the general formula LiMgxCo1−xO2 (x=0.00–0.20) was synthesized by the solid state fusion method trying to reduce the cost and toxicity, and to improve the overall electrochemical cell performance. All synthesized cathodes were characterized by XRD, TG/DTA, FTIR, SEM, particle size analysis and charge-discharge performances at constant current of 0.05 mA. All compounds were found to possess phase purity, have better crystallinity, preferred surface morphology and size-reduced particles of uniform distribution. The incorporation of the larger Mg2+ ion compared to the Li+ ion up to 0.20 mol-% leads to an increase in the unit cell volume, which restricts the concentration of the Co-O bond upon delithiation. Mg2+, commonly known for its structure stabilizing effect, has been found to have only a small effect on the crystal lattice of LiCoO2, especially at higher substituent levels, mainly due to the migration of Mg2+ ions from slab to inter-slab structure. The effect of Mg2+ on the modification of the capacity and structural stability compared to the unmodified LiCoO2 cathode is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, Mater. Res. Bull.17, 783 (1980).

    Google Scholar 

  2. Sony Lithium-Ion Battery performance Summary, EC,2, 31 (1994).

  3. C. Delmas, I, Saadoune, Solid State Ionics53–56, 370 (1992).

    Google Scholar 

  4. C. Delmas, I. Saadoune, A.Rougier, J. Power Sources43–44, 595 (1993).

    Google Scholar 

  5. I. Saadoune, C. Delmas, J. Mater. Chem.6, 193 (1996).

    Article  CAS  Google Scholar 

  6. J. Cho, G. Kim, H.S. Lim, J. Electrochem Soc.146, 3571 (1999).

    CAS  Google Scholar 

  7. J. Cho, H. Jung, Y. Park, G. Kim, H.S. Lim, J. Electrochem Soc.147, 15 (2000).

    CAS  Google Scholar 

  8. P. Periasamy, B. Ramesh Babu, R. Thirunakaran, N. Kalaiselvi, T. Premkumar, N.G. Renganathan, M. Raghavan, N. Muniyandi, Bull. Mater. Sci.23, 345 (2000).

    CAS  Google Scholar 

  9. G. Ceder, M.K. Aydinol, A.F. Kohan, Comput. Mater. Sci.8, 61 (1997).

    Article  Google Scholar 

  10. G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Nature392, 694 (1998).

    Article  CAS  Google Scholar 

  11. Y.I. Jang, B. Huang, H. Wang, D.R. Sadoway, G. Ceder, Y.M. Chiang, H. Liu, H.J. Tamura, J. Electrochem. Soc.146, 862 (1999).

    CAS  Google Scholar 

  12. Y.I. Jang, B. Huang, H. Wang, D.R. Sadoway, G. Ceder, Y.M. Chiang, H. Liu, H.J. Tamura, J. Power Sources81–82, 589 (1999).

    Google Scholar 

  13. C. Poullerie, L. Croguennec, Ph. Biensan, P. Willmann, and C. Delmas, J. Electrochem. Soc.147, 2061 (2000).

    Google Scholar 

  14. H. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamamura, M. Takano, K. Ohyama, M. Ohashi and Y. Yamaguchi, Solid State Ionics78, 123 (1995).

    Article  CAS  Google Scholar 

  15. C.C. Chang, J.Y. Kim, P.N. Kumta, J. Power Sources89, 56 (2000).

    CAS  Google Scholar 

  16. H. Tukamoto and A.R. West, J. Electrochem. Soc.144, 3164 (1977).

    Google Scholar 

  17. A. Lundbald and Bergman, Solid State Ionics96, 173 (1997).

    Google Scholar 

  18. A. Lundbald, S.A. EI-Hakam, S.E. Samra, Indian J. Chem. Sec. A29, 470 (1990).

    Google Scholar 

  19. D.R. Lide (Ed.), Handbook of Chemistry and Physics, 74th Ed., The Chemical Rubber Company, Ohio (1993–1994).

    Google Scholar 

  20. W.U. Malik, D.R. Gupta, I. Masood, R.S. Gupta, J. Mater. Sci. Lett.4, 532 (1985).

    Article  CAS  Google Scholar 

  21. A. Reisman, J. Amer. Chem. Soc.80, 3558 (1958).

    CAS  Google Scholar 

  22. UIImann’s Encyclopaedia of Industrial Chemistry, A 16, 5th Ed., Verlagsgessellschaft mbH, VCH Publishers, Weinheim, 1990, p.131.

  23. C. Julien, S.S. Michael, S. Ziolkiewcz, Int. J. Inorg. Mater.1, 29 (1999).

    Article  CAS  Google Scholar 

  24. T. Ohuzuku, U. Ueda, N. Nagayama, Y. Iwakoshi, H. Homori, Electrochim. Acta38, 1159 (1993).

    Google Scholar 

  25. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc.142, 1431 (1995).

    CAS  Google Scholar 

  26. A.R. Naghash, J.Y. Lee, Electrochem. Acta46, 941 (2001).

    CAS  Google Scholar 

  27. A.R. Naghash, J.Y. Lee, Electrochem. Acta46, 2293 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirunakaran, R., Kalaiselvi, N., Periasamy, P. et al. Mg substituted LiCoO2 for reversible lithium intercalation. Ionics 9, 388–394 (2003). https://doi.org/10.1007/BF02376591

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376591

Keywords

Navigation