Skip to main content
Log in

Preparation and electrochemical properties of cationic substitution Li2Mn0.98M0.02SiO4 (M = Mg, Ni, Cr) as cathode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li2Mn0.98M0.02SiO4 (M = Mg, Ni, Cr) cathode material for lithium-ion batteries was synthesized by traditional solid-phase doping method used Li2CO3, MnCO3, (C2H5O)4Si, and MgC2O4·2H2O (or NiC2O4·2H2O or C2O3) as staring materials. The suitable calcination temperature (700 °C) was obtained by TG-DTA curve. The influence of different doping amount on the crystal structure, micromorphology, and electrochemical properties of Li2MnSiO4 was studied by XRD, SEM, and electrochemical performance measurement. The XRD patterns indicate that the Li2MnSiO4 crystallized in an orthorhombic structure with a space group of Pmn21. It can be seen from SEM images that Mg doping has no effect on the micromorphology, Cr doping can refine the powder, and the particle size is about 200–800 nm. The electrochemical performance measurement demonstrates that the Li2Mn0.98Cr0.02SiO4 shows the best electrochemical performance with an initial discharge capacity of 29.8 mAh g−1 at 0.1 C, and the discharge capacity retention rate after 70 cycles is 20.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li J, Luo S, Ding X, Wang Q, He P (2018) Three-dimensional honeycomb-structural LiAlO2-modified LiMnPO4 composite with superior high rate capability as Li-ion battery cathodes. ACS Appl Mater Inter 10(13):10786–10795. https://doi.org/10.1021/acsami.7b17597

    Article  CAS  Google Scholar 

  2. Liu C, Luo S, Huang H, Wang Z, Wang Q, Zhang Y, Liu Y, Zhai Y, Wang Z (2018) Potassium vanadate K0.23V2O5 as anode materials for lithium-ion and potassium-ion batteries. J Power Sources 389:77–83. https://doi.org/10.1016/j.jpowsour.2018.04.014

    Article  CAS  Google Scholar 

  3. Liu H, Luo S, Yan S, Wang Q, Hu D, Wang Y, Feng J, Yi T (2019) High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Compos Part B Eng 164:576–582. https://doi.org/10.1016/j.compositesb.2019.01.084

    Article  CAS  Google Scholar 

  4. Effect of structure on the Fe3 + / Fe2 + redox couple in iron phosphates

  5. Arroyo-de Dompablo ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni). Electrochem Commun 8(8):1292–1298. https://doi.org/10.1016/j.elecom.2006.06.003

    Article  CAS  Google Scholar 

  6. Dominko R, Bele M, Gaberšček M, Meden A, Remškar M, Jamnik J (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8(2):217–222. https://doi.org/10.1016/j.elecom.2005.11.010

    Article  CAS  Google Scholar 

  7. Qiu S, Pu X, Ai X, Yang H, Chen Z, Cao Y (2018) Template synthesis of mesoporous Li2MnSiO4@C composite with improved lithium storage properties. Electrochim Acta 291:124–131. https://doi.org/10.1016/j.electacta.2018.08.146

    Article  CAS  Google Scholar 

  8. Shree Kesavan K, Michael MS, Prabaharan SRS (2019) Facile electrochemical activity of monoclinic Li2MnSiO4 as potential cathode for Li-ion batteries. ACS Appl Mater Inter 11(32):28868–28877. https://doi.org/10.1021/acsami.9b08213

    Article  CAS  Google Scholar 

  9. Yan X, Hou Y, Huang Y, Zheng S, Shi Z, Tao X (2019) Effects of Ga, Ge and As modification on structural, electrochemical and electronic properties of Li2MnSiO4. J Electrochem Soc 166(15):A3874–A3880. https://doi.org/10.1149/2.1321915jes

    Article  CAS  Google Scholar 

  10. Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J (2007) Li2MnSiO4 as a potential Li-battery cathode material. J Power Sources 174(2):457–461. https://doi.org/10.1016/j.jpowsour.2007.06.188

    Article  CAS  Google Scholar 

  11. Zhu H, Deng W, Chen L, Zhang S (2019) Nitrogen doped carbon layer of Li2MnSiO4 with enhanced electrochemical performance for lithium ion batteries. Electrochim Acta 295:956–965. https://doi.org/10.1016/j.electacta.2018.11.133

    Article  CAS  Google Scholar 

  12. Wang C, Xu Y, Sun X, Zhang B, Chen Y, He S (2018) Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries. J Power Sources 378:345–352. https://doi.org/10.1016/j.jpowsour.2017.12.004

    Article  CAS  Google Scholar 

  13. Modification and deterioration mechanism of lithium manganese silicate as cathode material for lithium-ion batteries. https://doi.org/10.7521/j.issn.0454-5648.2013.10.14

  14. Effect of Ni substitution on structural stability, micromorphology, and electrochemical performance of Li2MnSiO4/C cathode materials

  15. Cheng H, Zhao S, Wu X, Zhao J, Wei L, Nan C (2018) Synthesis and structural stability of Cr-doped Li 2 MnSiO 4/C cathode materials by solid-state method. Appl Surf Sci 433:1067–1074. https://doi.org/10.1016/j.apsusc.2017.10.045

    Article  CAS  Google Scholar 

  16. Spectrochim Acta A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2014.02.095

  17. Wei Y, Wang LJ, Yan J et al (2011) Calcination temperature effects on the electrochemical performance ofLi2MnSiO4/C cathode material for Lithium ion batteries. Acta Phys -Chim Sin 27(11):2587–2592

    Article  CAS  Google Scholar 

  18. Duncan H, Kondamreddy A, Mercier PHJ, Le Page Y, Abu-Lebdeh Y, Couillard M, Whitfield PS, Davidson IJ (2011) Novel Pn polymorph for Li2MnSiO4 and its electrochemical activity as a cathode material in Li-ion batteries. Chem Mater 23(24):5446–5456. https://doi.org/10.1021/cm202793j

    Article  CAS  Google Scholar 

  19. Liu C, Luo S, Huang H, Zhai Y, Wang Z (2019) Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries. Chem Eng J 356:53–59. https://doi.org/10.1016/j.cej.2018.09.012

    Article  CAS  Google Scholar 

  20. Zhou LZ, Xu QJ, Liu MS, Jin X (2013) Novel solid-state preparation and electrochemical properties of Li1.13[Ni0.2Co0.2Mn0.47]O2 material with a high capacity by acetate precursor for Li-ion batteries. Solid State Ionics 249-250:134–138. https://doi.org/10.1016/j.ssi.2013.07.024

    Article  CAS  Google Scholar 

  21. Arsentev M, Hammouri M, Kovalko N, Kalinina M, Petrov A (2017) First principles study of the electrochemical properties of Mg-substituted Li2MnSiO4. Comp Mater Sci 140:181–188. https://doi.org/10.1016/j.commatsci.2017.08.045

    Article  CAS  Google Scholar 

  22. Saracibar A, Wang Z, Carroll KJ, Meng YS, Dompablo MEA (2015) New insights into the electrochemical performance of Li2MnSiO4: effect of cationic substitutions. J Mater Chem A 3(11):6004–6011. https://doi.org/10.1039/C4TA03367A

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 51874079, 51674068, 51804035); the Natural Science Foundation of Hebei Province (No. E2018501091); the Training Foundation for Scientific Research of Talents Project, Hebei Province (No. A2016005004); the Fundamental Research Funds for the Central Universities (Nos. N172302001, N182312007, N182306001, N2023040); and the Hebei Province Key Research and Development Plan Project (No. 19211302D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-hua Luo or Longjiao Chang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhan, Y., Luo, Sh. et al. Preparation and electrochemical properties of cationic substitution Li2Mn0.98M0.02SiO4 (M = Mg, Ni, Cr) as cathode material for lithium-ion batteries. Ionics 26, 3769–3775 (2020). https://doi.org/10.1007/s11581-020-03570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03570-0

Keywords

Navigation